{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter5 - Single mode fibers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1 : Page 86" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " w = 4.7086 and wp = 4.6184 micro meter when wavelength is 1.30 micro meter\n", " w = 5.5109 and wp = 5.3570 micro meter when wavelength is 1.55 micro meter\n" ] } ], "source": [ "from __future__ import division\n", "from math import pi, sqrt\n", "#w and wp\n", "n=1.46#core refractive index\n", "d=0.003#differnce in core-cladding refrative index\n", "a=4#core radius in micro meter\n", "h1=1.30# inmicro meter\n", "h2=1.55#in micro meter\n", "v1=((2*pi*(a*10**-6))*n*sqrt(2*(d)))/(h1*10**-6)#normalised frequency parameter\n", "v2=((2*pi*(a*10**-6))*n*sqrt(2*(d)))/(h2*10**-6)#normalised frequency parameter\n", "w1=(a*10**-6)*(0.65+((1.619)/(v1)**(3/2))+(2.879/(v1)**6))#in meter\n", "wp1=w1-(a*10**-6)*(0.016+((1.567)/(v1)**7))#in micro meter\n", "w2=(a*10**-6)*(0.65+((1.619)/(v2)**(3/2))+(2.879/(v2)**6))#in meter\n", "wp2=w2-(a*10**-6)*(0.016+((1.567)/(v2)**7))#in micro meter\n", "print \" w = %0.4f\"%(w1*10**6),\"and wp = %0.4f\"%(wp1*10**6),\"micro meter when wavelength is 1.30 micro meter\"\n", "print \" w = %0.4f\"%(w2*10**6),\"and wp = %0.4f\"%(wp2*10**6),\"micro meter when wavelength is 1.55 micro meter\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2 : Page 88" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "difference between propogation constant = 62.83 m**-1\n", "part (b)\n", "modal birefringence = 1e-05\n" ] } ], "source": [ "#difference between propogation constant and modal birefringence\n", "print \"part (a)\"\n", "bl=10#beat length in cm\n", "h=1#in micro meter\n", "db=((2*pi)/(bl*10**-2))#in m**-1\n", "print \"difference between propogation constant = %0.2f m**-1\"%db\n", "print \"part (b)\"\n", "mb=db*((h*10**-6)/(2*pi))#modal birefringence\n", "print \"modal birefringence = %0.e\"%mb\n", "#answer is approximately equal to the answer in the book" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3 : Page 93" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " waveguide dispersion factor = -3.149 ps nm**-1 km**-1 at wavelength 1.3 micro meter\n", " waveguide dispersion factor = -5.537 ps nm**-1 km**-1 at wavelength 1.55 micro meter\n" ] } ], "source": [ "#waveguide dispersion factor\n", "n=1.45#core refractive index\n", "d=0.003#differnce in core-cladding refrative index\n", "n2=1.45*(1-d)#cladding refractive index\n", "d1=8.2#core diameter in micro meter\n", "a=d1/2#core radius in micro meter\n", "h1=1.30# inmicro meter\n", "h2=1.55#in micro meter\n", "v1=(2*pi*a*n*sqrt(2*d))/h1#normalised frequency parameter\n", "v2=((2*pi*(a))*n*sqrt(2*(d)))/(h2)#normalised frequency parameter\n", "v1dv=0.080+0.549*(2.834-v1)**2#\n", "v2dv=0.080+0.549*(2.834-v2)**2#\n", "c=3*10**8# in m/s\n", "dw1=-((n2*d*v1dv)/(c*h1))*10**12#waveguide dispersion factor in ps nm**-1 km**-1\n", "dw2=-((n2*d*v2dv)/(c*h2))*10**12#waveguide dispersion factor in ps nm**-1 km**-1\n", "print \" waveguide dispersion factor = %0.3f\"%(dw1),\"ps nm**-1 km**-1 at wavelength 1.3 micro meter\"\n", "print \" waveguide dispersion factor = %0.3f\"%(dw2),\"ps nm**-1 km**-1 at wavelength 1.55 micro meter\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4 : Page 95" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "diameter of the core = 7.10 micro meter\n" ] } ], "source": [ "#diameter of the core\n", "c=3*10**8#in m/s\n", "dm=6#material dispersion in ps nm**-1 km**-1\n", "h=1.55#in micro meter\n", "n1=1.45#core refrative index\n", "d=0.005#differnce\n", "n2=n1*(1-d)#cladding refrative index\n", "x=((-dm/(((-n2*d)/(c*h))*10**12))-0.080)/0.549#\n", "v=-(sqrt(x)-2.834)#\n", "d=((v*h)/(pi*n1*sqrt(2*d)))#diameter in micro meter\n", "print \"diameter of the core = %0.2f micro meter\"%d" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5 : Page 100" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "splice loss = 0.20 dB when wavelength is 1.30 micro meter\n", "splice loss = 0.15 dB when wavelength is 1.55 micro meter\n" ] } ], "source": [ "#splice loss\n", "h1=1.30#in micro meter\n", "wp1=4.6155#in micro meter\n", "h2=1.55#in micro meter\n", "wp2=5.355#in micro meter\n", "sl1=4.34*(1/wp1)**2#splice loss in dB\n", "sl2=4.34*(1/wp2)**2#splice loss in dB\n", "print \"splice loss = %0.2f dB when wavelength is 1.30 micro meter\"%sl1\n", "print \"splice loss = %0.2f dB when wavelength is 1.55 micro meter\"%sl2" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }