{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter12 - Fiber-optic communiation systems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.1 : Page 299" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum possible link length = 8.00 km\n", "total rise time of the system in ns is 30.0\n" ] } ], "source": [ "from __future__ import division\n", "from math import sqrt, pi\n", "#link length and reise time\n", "af=2.5##dB/km\n", "ac=0.5##dB/splice\n", "nc=1##\n", "lc=1##dB\n", "ncc=2##\n", "plx=-10##dBm\n", "prx=-42##dBm\n", "Ms=6##dB\n", "L=((plx-prx-Ms-(lc*ncc))/(af+ac))##\n", "TTX=12##NS\n", "TRX=11##NS\n", "NS1=3##NS/KM\n", "NS2=1##NS/KM\n", "tmat=(NS1*L)##ns\n", "tint=(NS2*L)##ns\n", "tsys=sqrt((TTX**2+tmat**2+tint**2+TRX**2))##ns\n", "print\"maximum possible link length = %0.2f km\"% L\n", "print \"total rise time of the system in ns is\",round(tsys)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.2: Page 305" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "maximum possible link length = 4.71 km\n", "part (b)\n", "system bandwidth = 8.00 MHz\n" ] } ], "source": [ "## link length and bandwidth\n", "print \"part (a)\"\n", "af=3##dB/km\n", "ac=0.5##dB/splice\n", "nc=1##\n", "lc=1##dB\n", "ncc=1.5##\n", "plx=0##dBm\n", "prx=-25##dBm\n", "Ms=7##dB\n", "L=((plx-prx-Ms-(lc*ncc))/(af+ac))##\n", "TTX=12##NS\n", "TRX=11##NS\n", "NS1=3##NS/KM\n", "NS2=1##NS/KM\n", "tmat=(NS1*L)##ns\n", "tint=(NS2*L)##ns\n", "tsys=sqrt((TTX**2+tmat**2+tint**2+TRX**2))##ns\n", "print \"maximum possible link length = %0.2f km\"%L\n", "print \"part (b)\"\n", "af=3##dB/km\n", "ac=0.5##dB/splice\n", "nc=1##\n", "lc=1##dB\n", "ncc=1.5##\n", "plx=-0##dBm\n", "prx=-25##dBm\n", "Ms=7##dB\n", "L=((plx-prx-Ms-(lc*ncc))/(af+ac))##\n", "TTX=1##NS\n", "TRX=5##NS\n", "NS1=9##NS/KM\n", "NS2=2##NS/KM\n", "tf=((NS1*L)**2+(NS2*L)**2)##\n", "tsys=sqrt((TTX**2+tf+TRX**2))##ns\n", "df=0.35/(tsys*10**-3)##\n", "print \"system bandwidth = %0.2f MHz\"%round(df)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.3 : Page 310" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "no. of subscribers are 38.0\n" ] } ], "source": [ "from math import log10\n", "#no. of subscribers\n", "pt=1##mW\n", "pn=-40##dBm\n", "pn1=10**(pn/10)##\n", "c=0.05##\n", "d=0.11##\n", "x=((pn1)/(pt*c))##\n", "y=((log10(x))/(log10((1-d)*(1-c))))##\n", "n=y+1##\n", "print \"no. of subscribers are\",round(n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.4: Page 311" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total power, P_tot = 92.4 mW\n" ] } ], "source": [ "# Total power\n", "#given data :\n", "L_eff=20## in km\n", "del_lamdaC=125## in nm\n", "gR=6*10**-14## m/W\n", "A_eff=55*10**-12## in m**2#\n", "del_lamdaS=0.8## in nm\n", "N=32## number of channels\n", "F=0.1## constant\n", "P_tot=(4*F*del_lamdaC*A_eff)/(gR*del_lamdaS*L_eff*(N-1))#\n", "print \"Total power, P_tot = %0.1f mW\"%P_tot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.5 : Page 312" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SBS threshold power for the worst case = 8.66 mW\n", "SBS threshold power for the best possible case = 17.33 mW\n" ] } ], "source": [ "#SBS threshold power\n", "#given data :\n", "gb=4*10**-11## in m/W\n", "A_eff=55*10**-12## in m**2\n", "L_eff=20## in km\n", "lamda_p=1.55## micro-m\n", "n=1.46## constant\n", "Va=5960## for the silica fiber in m-s**-1\n", "Vb=(2*n*Va)/lamda_p#\n", "del_v=100*10**6## in Hz\n", "del_Vb=20*10**6## in Hz\n", "b1=1#\n", "b2=2#\n", "P_th=((21*b1*A_eff)/(gb*L_eff))*(1+(del_v/del_Vb))\n", "P_th1=((21*b2*A_eff)/(gb*L_eff))*(1+(del_v/del_Vb))\n", "print \"SBS threshold power for the worst case = %0.2f mW\"%P_th\n", "print \"SBS threshold power for the best possible case = %0.2f mW\"%P_th1" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }