{ "metadata": { "celltoolbar": "Raw Cell Format", "name": "", "signature": "sha256:f5d955431773596849dab1900f3dadd3740eea7cc2816449e90ee1d7309c3fc7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2: Fundamental of Semiconductor Theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1,Page number 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "n=1;\n", "Ne=2*n**2;\n", "print\"Maximum number of electron in 1st shell is \",Ne; #Result\n", "n2=2; #shell no\n", "Ne2=2*n2**2; #shell no\n", "print\"Maximum number of electron in 2nd shell is \",Ne2; #Result\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum number of electron in 1st shell is 2\n", "Maximum number of electron in 2nd shell is 8\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2,Page number 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "#Given for silicon for temp 0-400K\n", "Eg0_Si=1.17; #in eV\n", "A=4.73*10**-4; #in eV/K\n", "B=636;\n", "for i in range(1,9):\n", " T=50*i; #degree/Kelvin\n", " Eg_Si=Eg0_Si-(A*T**2)/(B+T);\n", " print\"Band gap energy of silicon at \",T,\" K is \",round(Eg_Si,3),\"eV \"; #result\n", "\n", "#Given for Germanium for temp 0-400K\n", "print\"\\n\"\n", "Eg0_Ge=0.7437; #in eV\n", "A_Ge=4.774*10**-4; #in eV/K\n", "B_Ge=235;\n", "for i in range(1,9):\n", " T=50*i; #degree/Kelvin\n", " Eg_Ge=Eg0_Ge-(A_Ge*T**2)/(B_Ge+T);\n", " print\"Band gap energy of germanium at \",T,\" K is \",round(Eg_Ge,3),\"eV \"; #result\n", "\n", "\n", "#Given for GaAs for temp 0-400K\n", "print\"\\n\"\n", "Eg0_Ga=1.519; #in eV\n", "A_Ga=5.405*10**-4; #in eV/K\n", "B_Ga=204;\n", "for i in range(1,9):\n", " T=50*i; #degree/Kelvin\n", " Eg_Ga=Eg0_Ga-(A_Ga*T**2)/(B_Ga+T);\n", " print\"Band gap energy of GaAs at \",T ,\"K is \",round(Eg_Ga,3),\"eV\"; #result\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Band gap energy of silicon at 50 K is 1.168 eV \n", "Band gap energy of silicon at 100 K is 1.164 eV \n", "Band gap energy of silicon at 150 K is 1.156 eV \n", "Band gap energy of silicon at 200 K is 1.147 eV \n", "Band gap energy of silicon at 250 K is 1.137 eV \n", "Band gap energy of silicon at 300 K is 1.125 eV \n", "Band gap energy of silicon at 350 K is 1.111 eV \n", "Band gap energy of silicon at 400 K is 1.097 eV \n", "\n", "\n", "Band gap energy of germanium at 50 K is 0.74 eV \n", "Band gap energy of germanium at 100 K is 0.729 eV \n", "Band gap energy of germanium at 150 K is 0.716 eV \n", "Band gap energy of germanium at 200 K is 0.7 eV \n", "Band gap energy of germanium at 250 K is 0.682 eV \n", "Band gap energy of germanium at 300 K is 0.663 eV \n", "Band gap energy of germanium at 350 K is 0.644 eV \n", "Band gap energy of germanium at 400 K is 0.623 eV \n", "\n", "\n", "Band gap energy of GaAs at 50 K is 1.514 eV\n", "Band gap energy of GaAs at 100 K is 1.501 eV\n", "Band gap energy of GaAs at 150 K is 1.485 eV\n", "Band gap energy of GaAs at 200 K is 1.465 eV\n", "Band gap energy of GaAs at 250 K is 1.445 eV\n", "Band gap energy of GaAs at 300 K is 1.422 eV\n", "Band gap energy of GaAs at 350 K is 1.399 eV\n", "Band gap energy of GaAs at 400 K is 1.376 eV\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3,Page number 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "l=10*10**-3; #in m\n", "w=2*10**-3; #in m\n", "h=2*10**-3; #in m\n", "V=12; #in V\n", "u_n=0.14; #in m*m/V*s\n", "u_p=0.05; #in m*m/V*s\n", "q_n=1.6*10**-19; #in Columbs\n", "q_p=1.6*10**-19; #in Columbs\n", "p_i=2.4*10**19; #in columbs\n", "n_i=2.4*10**19; #in columbs\n", "E=V/l;\n", "v_n=E*u_n;\n", "v_p=E*u_p;\n", "J_n=n_i*q_n*v_n;\n", "J_p=p_i*q_p*v_p;\n", "J=J_n+J_p;\n", "print\"Electron velocity :vn is \",v_n,\"m/s\"; #result\n", "print\"Hole velocity :vp is \",v_p/1000,\"km/s\"; #result\n", "print\"Current density : Jn \",J,\"A/m^2\"; #result\n", "A=88*10**-6;\n", "I_T=J*A;\n", "print\"Total current :I_T is\",round(I_T*1000,4),\"mA\"; #result\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electron velocity :vn is 168.0 m/s\n", "Hole velocity :vp is 0.06 km/s\n", "Current density : Jn 875.52 A/m^2\n", "Total current :I_T is 77.0458 mA\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4,Page number 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "n_i=2*10**17; #electron/m*m*m\n", "p=5.7*10**20; #holes/m*m*m\n", "u_n=0.14; #in m*m/V*s\n", "u_p=0.05; #in m*m/V*s\n", "q_n=1.6*10**-19; #in Columbs\n", "q_p=1.6*10**-19; #in Columbs\n", "n=(n_i)**2/p;\n", "print\"Electron :n is \",\"{0:.3e}\".format(n),\"electrons \"; #result\n", "n=7*10**13\n", "P=(n*u_n*q_n)+(p*u_p*q_p);\n", "print\"Conductivity :P is \",round(P,4),\"S/m \"; #result\n", "# answer misprinted\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electron :n is 7.018e+13 electrons \n", "Conductivity :P is 4.56 S/m \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5,Page number 55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "NA=10**22; #acceptors/m*m*m\n", "ND=1.2*10**21; #donors/m*m*m\n", "T=298; #in Kelvin\n", "k=1.38*10**-23; #Boltzman Constant in J/K\n", "q=1.6*10**-19; #charge of electron in C\n", "Vt=k*T/q; #thermal voltage in V\n", "print\" VT is \",Vt*1000,\"mV\"; #result\n", "n_i=2.4*10**17; #carrier/m**3 for silicon \n", "VB=Vt*log(NA*ND/n_i**2); #barrier voltage in V\n", "print\" Barrier Voltage of Silicon VB is \",round(VB*1000,4),\"mV\"; #result\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " VT is 25.7025 mV\n", " Barrier Voltage of Silicon VB is 492.3224 mV\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6,Page number 56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "Is=0.12; #in pAmp\n", "V=0.6; #in V\n", "T=293; #in Kelvin\n", "k=1.38*10**-23; #Boltzmann's Constant in J/K\n", "q=1.6*10**-19; # charge of electron in C\n", "Vt=k*T/q; #thermal voltage\n", "print\"VT(20 deg Cel) is \",round(Vt,4),\"V\"; #result in book is misprint\n", "T1=373; #in Kelvin\n", "n=1.25;\n", "Vt1=k*T1/q; #thermal voltage\n", "print\"VT(100 deg Cel) is \",round(Vt1,4),\"V\";\n", "I=Is*(math.e**(V/(n*Vt1))-1); #forward biasing current in mircoA\n", "print\"I(100 deg Cel) is \",round(I/10**6,4),\"microampere\"; #result\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "VT(20 deg Cel) is 0.0253 V\n", "VT(100 deg Cel) is 0.0322 V\n", "I(100 deg Cel) is 0.3622 microampere\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7,Page number 56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "Is=100; #in nAmp \n", "Ts=100; #in Kelvin\n", "I_s=Is*10**-9*2**(Ts/10); #I_s will be in nm \n", "print\" I(100 deg Cel) is \",I_s*10**6,\"microampere\"; #converted to microA from nm\n", "# wrong calculation in the book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " I(100 deg Cel) is 102.4 microampere\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8,Page number 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#given\n", "\n", "Br_Si=1.79*10**-15; #Recombination coefficient for Si\n", "Br_Ge=5.25*10**-14; #Recombination coefficient for Ge\n", "Br_GeAs=7.21*10**-10; #Recombination coefficient for GeAs\n", "Br_InAs=8.5*10**-11; #Recombination coefficient for InAs\n", "P_N=2*10**20; #per cubic cm\n", "\n", "T_Ge=1/Br_Ge/P_N; #radiative minority carrier lifetime\n", "print\"T_Ge is \",round(T_Ge/10**-6,4),\"micro-s\"; #result\n", "\n", "T_Si=1/Br_Si/P_N; #radiative minority carrier lifetime\n", "print\"T_Si is \",round(T_Si/10**-6,4),\"micro-s\"; #result\n", "\n", "T_InAs=1/Br_InAs/P_N; #radiative minority carrier lifetime\n", "print\"T_InAs is \",round(T_InAs/10**-12,4),\"ps\"; #result\n", "\n", "T_GeAs=1/Br_GeAs/P_N; #radiative minority carrier lifetime\n", "print\"T_GeAs is \",round(T_GeAs/10**-12,4),\"ps\"; #result\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "T_Ge is 0.0952 micro-s\n", "T_Si is 2.7933 micro-s\n", "T_InAs is 58.8235 ps\n", "T_GeAs is 6.9348 ps\n" ] } ], "prompt_number": 25 } ], "metadata": {} } ] }