{ "metadata": { "name": "", "signature": "sha256:983f6479fd716219923fc039ee4060b375eda2b85fbdeb1a9e63c25f153f7ec9" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 5: AIR COMPRESSORS AND MOTORS REFRIGERATIONS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1 Page 66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "a=7.0#in\n", "b=10.0#in\n", "c=12.0#in\n", "r=96.0#in\n", "p1=15.0#lb/in^2\n", "p2=100.0#lb/in^2\n", "T=16.0#Degree C\n", "gama=1.4#in\n", "h=120.0#r.p.m\n", "T1=T+273#C absolute\n", "\n", "#CALCULATIONS\n", "v1=(pi/4)*(a/c)**2*(b/c)#ft^3\n", "w=(p1*144*v1)/(r*T1)#lb\n", "w1=h*w#lb\n", "W=1680*(1.72-1)#ft lb\n", "I=144*p1*v1*log(p2/p1)#ft lb\n", "E=I/W*100#percent\n", "\n", "#RESULTS\n", "print\"The ideal efficiency is defined as the ratio of tthis work is\",round(E,4),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ideal efficiency is defined as the ratio of tthis work is 75.4482 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 Page 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "h1=16#i.h.p\n", "p1=100#lb/in^2\n", "p2=15#lb/in^2\n", "R=275#R.p.m\n", "h=550#ft/min\n", "q=33000#in^2\n", "v1=4.85#lb\n", "B=8.53#in\n", "\n", "#CALCULATIONS\n", "M=(p1/v1)-p2+(p1/v1-p2)*1/0.2\n", "S=h/(2*R)#ft\n", "I=(q*h1)/(M*S*R)#in^2\n", "\n", "#RESULTS\n", "print\"The effect of the clearance volume is\",round(I,3),\"in^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The effect of the clearance volume is 56.954 in^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3 Page 69" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "h=100#ft^3\n", "t=15#degree C\n", "p=120#lb/in^2\n", "gama=1.3#in\n", "t1=15#Degree C\n", "M=((144*t*h*2.6)/(0.3)*(1.271-1))#ft lb\n", "\n", "#CALCULATIONS\n", "V=sqrt(p/t)#ft lb\n", "\n", "#RESULTS\n", "print\"Compare the values of the two cylinders is\",round(V,3),\"ft lb\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Compare the values of the two cylinders is 2.828 ft lb\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 Page 71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "h=0.2#ft^3\n", "v=10#percent\n", "T=15#degree c\n", "p=30#lb/in62\n", "t1=15#Degree C\n", "p1=60#lb/in^2\n", "v1=2.2#ft^3\n", "v3=0.328#ft^3\n", "A=(v1-v3)#ft^3\n", "v2=1.341#ft^3\n", "V=v2-h#ft^\n", "t2=288#Degree C\n", "\n", "#CALCULATIONS\n", "T2=(t2*p*v2)/(t1*v1)#Degree C absolute\n", "v5=(t2/T2)*V#ft^3\n", "v7=0.164#ft^3\n", "v8=v5-(v7/11)*v5\n", "v6=v8/(1-v7/11)#ft^3\n", "\n", "#RESULTS\n", "print\"The required volume of the H.P cylinder including clearance is\",round(v6,3),\"ft^3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required volume of the H.P cylinder including clearance is 0.936 ft^3\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6 Page 73" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "p1=80#lb/in^2\n", "p2=20#lb/in^2\n", "\n", "#CALCULATIONS\n", "P=sqrt(p1*p2)#lb/in62\n", "V=P/p1#stroke\n", "W=p2/P#stroke\n", "\n", "#RESULTS\n", "print\"the ratio of cut off to length of stroke is\",round(W,3),\"stroke\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the ratio of cut off to length of stroke is 0.5 stroke\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9 Page 75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "p1=25.0#lb/in^2\n", "p2=50.0#lb/in^2\n", "p3=75.0#lb/in^2\n", "p4=100.0#lb/in^2\n", "v1=29.2#ft^3\n", "v2=28.8#ft^3\n", "v3=28.1#ft^3\n", "v4=27.2#ft^3\n", "h=14.7#lb/in^2\n", "v=3.0#percent\n", "s=5.0#stroke\n", "\n", "#CALCULATIONS\n", "V=(pi*p1)/(4)*4#in^3\n", "V1=v/p4*V#in^3\n", "\n", "#RESULTS\n", "print\"The volume of efficiency of pressure is\",round(V1,3),\"in^3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The volume of efficiency of pressure is 2.356 in^3\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.12 Page 78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "p1=15.0#lb/in^2\n", "p2=60.0#lb/in^2\n", "t=16.0#Degree C\n", "Ta=273.0+t#Degree C absolute\n", "T=1.486#lb/in^2\n", "Td=Ta/T#Degree C absolute\n", "\n", "#CALCULATIONS\n", "P=Td/(Ta-Td)#Degree C absolute\n", "\n", "#RESULTS\n", "print\"The lowest temperature and coefficient of per formance is\",round(P,3),\"Degree C absolute\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest temperature and coefficient of per formance is 2.058 Degree C absolute\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.14 Page 79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "T1=30#Degree c\n", "T2=-10#degree C\n", "t1=263#F\n", "t2=303#F\n", "h1=20#Units\n", "h2=79#C.H.U/lb\n", "h=24#hours\n", "T3=1#Degree C\n", "p=2.2046#C.H.U/sec\n", "\n", "#CALCULATIONS\n", "P=h1*p#C.H.U/sec\n", "T=t1/(t2-t1)#F\n", "H=P*60#C.H.U\n", "W=(H*1400)/T#ft/lb\n", "hp=W/33000#h.p\n", "W1=(H*60*h)/(80*2240)#tons\n", "\n", "#RESULTS\n", "print\"the cycle is a perfect one\",round(W1,3),\"tons\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the cycle is a perfect one 21.259 tons\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.15 Page 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "p1=930#lb/in^2\n", "p2=440#lb/in^2\n", "T=268#F\n", "t1=25#F\n", "t2=5#F\n", "h1=19.4#C.H.U\n", "h2=-1.8#C.H.U\n", "h3=29#C.H.U\n", "h4=58.6#C.H.U\n", "d=0.6#C.H.U\n", "d1=0.06#lb\n", "d2=-0.01#lb\n", "c=40#percent\n", "h=24#hour\n", "t3=10#C\n", "d3=15#lb\n", "h5=80#C.H.U\n", "\n", "#CALCULATIONS\n", "A=(h1-(h2))-(d1-(d2))*T#C.H.U\n", "FD=A/T#units of entropy\n", "AD=(d*h4/T-0.07-A/T)*T#C.H.U\n", "W=4.28#C.H.U\n", "T=AD/W#C.H.U\n", "P=0.4*T#C.H.U\n", "H=P*W*d3#C.H.U\n", "H1=P*W*d3*60*h#C.H.U\n", "H2=t3+h5#C.H.U\n", "W1=H1/(H2*2240)#tond\n", "\n", "#RESULTS\n", "print\"The many tons of ice would a machine working between the same limit and having a relative coefficient is\",round(W1,3),\"tons\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The many tons of ice would a machine working between the same limit and having a relative coefficient is 0.598 tons\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.16 Page 82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "t1=20.0#Degeree C\n", "t2=-10.0#degree C\n", "h=0.95#dry\n", "t3=35.0#Degree C\n", "h1=0.066#lb\n", "h2=1.089#lb\n", "v1=-0.033#lb\n", "v2=1.193#lb\n", "v3=0.508#lb\n", "T1=263.0#F\n", "T2=293.0#F\n", "\n", "#CALCULATIONS\n", "T=T1/(T2-T1)#F\n", "E=h1-(v1)#lb\n", "C=0.1079#lb\n", "CP=E/C#lb\n", "A=CP*(T2-T1)-E*T1#C.H.U\n", "F=A/T1#units of entropy\n", "H=254.212#C.H.U\n", "H2=274.447#C.H.U\n", "W=(CP*(T2-T1)+h*1.023*(T2-T1)-E*T1)#C.H.U\n", "P=H/W#C.H.U\n", "V=A+v3*15-T1*v3*0.0507#C.H.U\n", "H1=T1*(v3*0.0507+0.05*1.023)#C.H.U\n", "N=H2/(W+V)#C.H.U\n", "\n", "#RESULTS\n", "print\"The upper and lower temperature limits respectively are\",round(T,4),\"F\"\n", "print\"The vapour compression cycle work done is\",round(H,3),\"C.H.U\"\n", "print\"The vapour is now additional work done is\",round(N,3),\"C.H.U\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The upper and lower temperature limits respectively are 8.7667 F\n", "The vapour compression cycle work done is 254.212 C.H.U\n", "The vapour is now additional work done is 8.322 C.H.U\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.18 Page 85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import pi,sqrt,acos,asin,atan,cos,sin,tan,log\n", "h=0.8#dry\n", "p=120#lb/in^2\n", "p1=1#lb/in^2\n", "t=100#Degree C\n", "A=99.6-38.6-0.178*311.8#C.H.U\n", "G=311.8#units of entropy\n", "AF=440.52#C.H.U\n", "H=399.82#lb/in^2\n", "p=307#lb\n", "\n", "#CALCULATIONS\n", "T=H/p#C.H.U\n", "\n", "#RESULTS\n", "print\"theoretical coefficient pf performance as a refrigeratior is\",round(T,3),\"C.H.U\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "theoretical coefficient pf performance as a refrigeratior is 1.302 C.H.U\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }