{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16 : Compressible Flow" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.1 page no : 859" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "V1 = 300.; \t\t\t#m/s\n", "p1 = 78.; \t\t\t#kN/m**2\n", "T1 = 313.; \t\t\t#K\n", "p2 = 117.; \t\t\t#kN/m**2\n", "R = 287.; \t\t\t#J/kg K\n", "y = 1.4;\n", "\n", "# Calculations\n", "#Let r1 = p1/rho1\n", "r1 = R*T1;\n", "V2 = math.sqrt(2*(y/(y-1)*r1*(1-(p2/p1)**((y-1)/y)) + V1**2/2));\n", "\n", "# Results\n", "print (\"Velocity of gas at section 2 = %.3f\")% (V2), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of gas at section 2 = 112.987 m/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.2 page no : 861" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "p1 = 35.; \t\t\t#kN/m**2\n", "V1 = 30.; \t\t\t#m/s\n", "T1 = 423.; \t\t\t#K\n", "V2 = 150.; \t\t\t#m/s\n", "R = 290.; \t\t\t#J/kg K\n", "y = 1.4;\n", "\n", "# Calculations\n", "#Let r1 = p2/p1\n", "r1 = R*T1; \n", "p2 = p1*(1-((V2**2/2-V1**2/2)*(y-1)/y/r1))**(y/(y-1));\n", "print (\"pressure = %.3f\")% (p2), (\"kN/m**2\")\n", "\n", "T2 = T1*(p2/p1)**((y-1)/y);\n", "t2 = T2-273;\n", "print (\"temperature = %.3f\")% (t2), (\"\u00b0C\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "pressure = 32.014 kN/m**2\n", "temperature = 139.360 \u00b0C\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.3 page no : 866" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "SG = 0.8;\n", "rho_oil = 800.; \t\t\t#kg/m**3\n", "K_oil = 1.5*10**9; \t\t\t#N/m**2; crude oil\n", "K_Hg = 27*10.**9; \t\t\t#N/m**2; Mercury\n", "rho_Hg = 13600.; \t\t\t#kg/m**3\n", "\n", "# Calculations and Results\n", "C_oil = math.sqrt(K_oil/rho_oil);\n", "print (\"Sonic velocity of crude oil = %.3f\")% (C_oil), (\"m/s\")\n", "\n", "C_Hg = math.sqrt(K_Hg/rho_Hg)\n", "print (\"Sonic velocity of Mercury = %.3f\")% (C_Hg), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Sonic velocity of crude oil = 1369.306 m/s\n", "Sonic velocity of Mercury = 1409.005 m/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.4 page no : 866" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "T = 228.; \t\t\t#K\n", "M = 2.;\n", "R = 287.; \t\t\t#Jkg K\n", "y = 1.4;\n", "\n", "# Calculations\n", "C = math.sqrt(y*R*T);\n", "V = M*C*3600./1000;\n", "\n", "# Results\n", "print (\"Velocity of the plane = %.3f\")% (V), (\"km/h\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of the plane = 2179.239 km/h\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.5 page no : 868" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "a = 40*math.pi/180; \t\t\t#Mach angle in radians\n", "y = 1.4;\n", "R = 287.; \t\t\t#J/kg K\n", "T = 288.; \t\t\t#K\n", "\n", "# Calculations\n", "C = math.sqrt(y*R*T);\n", "V = C/math.sin(a);\n", "\n", "# Results\n", "print (\"Velocity of bullet = %.3f\")% (V), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of bullet = 529.217 m/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.6 page no : 868" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "p = 88.3; \t\t\t#kN/m**2\n", "T = 271.; \t\t\t#K\n", "M = 40.*math.pi/180;\n", "y = 1.4;\n", "R = 287.; \t\t\t#J/kg K\n", "\n", "# Calculations\n", "C = math.sqrt(y*R*T);\n", "V = C/math.sin(M);\n", "\n", "# Results\n", "print (\"Velocity of the projectile = %.3f\")% (V), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of the projectile = 513.360 m/s\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.7 page no : 868" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "h = 1800.; \t\t\t#m\n", "T = 277.; \t\t\t#K\n", "t = 4.; \t\t\t#s\n", "y = 1.4;\n", "R = 287.; \t\t\t#J/kg K\n", "\n", "# Calculations\n", "C = math.sqrt(y*R*T);\n", "a = (math.cos(C/h*t));\n", "V = C/math.sin(a)*3600/1000;\n", "\n", "# Results\n", "print (\"Speed of the aircraft = %.3f\")% (V), (\"km/h\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of the aircraft = 1785.959 km/h\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.8 page no : 873" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "R = 287.; \t\t\t#J/kg K\n", "y = 1.4;\n", "V0 = 1000.*1000/3600; \t\t\t#m/s\n", "p0 = 78.5; \t\t\t#kN/m**2\n", "T0 = 265.; \t\t\t#K\n", "\n", "# Calculations and Results\n", "C0 = math.sqrt(y*R*T0);\n", "M0 = V0/C0;\n", "\n", "ps = p0*(1+((y-1)/2*M0**2))**(y/(y-1));\n", "print (\"(i) Stagnation pressure = %.3f\")%(ps), (\"kN/m**2\")\n", "\n", "Ts = T0*(1+((y-1)/2*M0**2));\n", "print (\"(ii) Stagnation temperature = %.3f\")% (Ts), (\"K\")\n", "\n", "rho_s = ps*10**3/R/Ts;\n", "print (\"(iii) Stagnation density = %.3f\")%(rho_s), (\"kg/m**3\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Stagnation pressure = 126.067 kN/m**2\n", "(ii) Stagnation temperature = 303.407 K\n", "(iii) Stagnation density = 1.448 kg/m**3\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.9 page no : 874" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "V0 = 1000.*1000./3600; \t\t\t#m/s\n", "T0 = 320.; \t\t\t#K\n", "p_atm = 98.1; \t\t\t#kN/m**2\n", "p = 9.81; \t\t\t#kN/m**2\n", "p0 = 98.1-p;\n", "R = 287.; \t\t\t#J/kg K\n", "y = 1.4;\n", "\n", "# Calculations and Results\n", "C0 = math.sqrt(y*R*T0);\n", "M0 = V0/C0;\n", "\n", "ps = p0*(1+((y-1)/2*M0**2))**(y/(y-1));\n", "print (\"Stagnation pressure = %.3f\")% (ps), (\"kN/m**2\")\n", "\n", "Ts = T0*(1+((y-1)/2*M0**2));\n", "print (\"Stagnation temperature = %.1f\")% (Ts), (\"K\")\n", "\n", "rho_s = ps*10**3/R/Ts;\n", "print (\"Stagnation density = %.3f\")% (rho_s), (\"kg/m**3\")\n", "\n", "M = 0.8;\n", "\n", "CF = 1+(M0**2./4)+((2-y)/24.*M0**4);\n", "print (\"Compressibility factor %.2f\")% (CF)\n", "\n", "#Note : Answers are slightly different because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stagnation pressure = 131.282 kN/m**2\n", "Stagnation temperature = 358.4 K\n", "Stagnation density = 1.276 kg/m**3\n", "Compressibility factor 1.16\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.10 page no : 875" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "R = 287.; \t\t\t#J/kg K\n", "y = 1.4;\n", "p0 = 220.*10**3; \t#N/m**2\n", "T0 = 300.; \t\t\t#K\n", "V0 = 200.; \t\t\t#m/s\n", "\n", "# Calculations and Results\n", "C0 = math.sqrt(y*R*T0);\n", "rho_0 = p0/R/T0;\n", "print (\"Stagnation pressure = \")\n", "\n", "print (\"(i) Compressibility is neglected\")\n", "ps = (p0+rho_0*V0**2/2)/10**3;\n", "print (\"ps = %.3f\")% (ps), (\"kN/m**2\")\n", "\n", "print (\"(ii) Compressibility is accounted for\")\n", "M0 = V0/C0;\n", "\n", "ps = (p0+rho_0*V0**2/2*(1+M0**2./4+(2-y)/24*M0**4))/10**3;\n", "print (\"ps = %.3f\")% (ps), (\"kN/m**2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stagnation pressure = \n", "(i) Compressibility is neglected\n", "ps = 271.103 kN/m**2\n", "(ii) Compressibility is accounted for\n", "ps = 275.484 kN/m**2\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.11 page no : 875" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "p0 = 35.*10**3; \t\t\t#Pa\n", "T0 = 235.; \t\t\t#K\n", "ps = 65.4*10**3; \t\t\t#N/m**2\n", "R0 = 8314.; \t\t\t#Nm/mole K\n", "M = 28.;\n", "\n", "# Calculations\n", "R = R0/M;\n", "rho_0 = p0/R/T0;\n", "Va = math.sqrt(2*(ps-p0)/rho_0);\n", "\n", "# Results\n", "print (\"Speed of the aircraft = %.3f\")% (Va), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of the aircraft = 348.159 m/s\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.12 page no : 885" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "p0 = 30.*10**3; \t\t\t#N/m**2\n", "V0 = 152.; \t\t\t#m/s\n", "y = 1.4;\n", "rho_0 = 1.224; \t\t\t#kg/m**3\n", "ps = p0+rho_0*V0**2/2;\n", "\n", "# Calculations\n", "rho_0 = 0.454; \t\t\t#kg/m**3\n", "V0 = math.sqrt(2*(ps-p0)/rho_0);\n", "C0 = math.sqrt(y*p0/rho_0);\n", "M = V0/C0;\n", "ccf = (1+M**2/4); \t\t\t#Compressibility correction factor\n", "V = V0/math.sqrt(ccf); \t\t\t#True speed of aircraft\n", "\n", "# Results\n", "print (\"True speed of aircraft = %.3f\")% (V), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "True speed of aircraft = 230.900 m/s\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.13 page no : 886" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "M = 3.; \t\t\t#Mach number\n", "d = 0.2; \t\t\t#m\n", "p_nozzle = 7.85; \t\t\t#kN/m**2\n", "T_nozzle = 200.; \t\t\t#K\n", "y = 1.4;\n", "\n", "# Calculations and Results\n", "A = math.pi/4*d**2;\n", "p_res = p_nozzle*(1+((y-1)/2*M**2))**(y/(y-1));\n", "print (\"Reservoir pressure = %.3f\")% (p_res), (\"kN/m**2\")\n", "\n", "T_res = T_nozzle*(1+((y-1)/2*M**2));\n", "print (\"Reservoir temperature = %.3f\")% (T_res), (\"K\")\n", "\n", "Ac = A*M/((2+(y-1)*M**2)/(y+1))**((y+1)/2/(y-1));\n", "print (\"Throat area (critical) = %.5f\")% (Ac), (\"m**2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reservoir pressure = 288.352 kN/m**2\n", "Reservoir temperature = 560.000 K\n", "Throat area (critical) = 0.00742 m**2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.14 page no : 887" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "R = 287.; \t\t\t#J/kg K\n", "y = 1.4;\n", "p_atm = 100.; \t\t\t#kN/m**2\n", "p1 = 284. + p_atm; \t\t\t#kN/m**2\n", "T1 = 297.; \t \t\t#K\n", "D = 0.02; \t\t \t#m\n", "\n", "# Calculations\n", "A2 = math.pi/4*D**2;\n", "rho_1 = p1*10**3/R/T1;\n", "m_max = 0.685*A2*math.sqrt(p1*10**3*rho_1);\n", "\n", "# Results\n", "print (\"Maximum flow rate = %.3f\")% (m_max), (\"kg/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum flow rate = 0.283 kg/s\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.15 page no : 888" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "R = 287.; \t\t\t#J/kg K\n", "y = 1.4;\n", "p1 = 2500.*10**3; \t#N/m**2\n", "T1 = 293.; \t\t\t#K\n", "p2 = 1750.*10**3; \t#N/m**2\n", "\n", "# Calculations\n", "rho_1 = p1/R/T1;\n", "V2 = math.sqrt(2*y/(y-1)*p1/rho_1*(1-(p2/p1)**((y-1)/y)));\n", "\n", "# Results\n", "print (\"Velocity of air = %.3f\")% (V2),(\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of air = 238.812 m/s\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.16 page no : 889" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "R = 287.; \t \t\t#J/kg K\n", "y = 1.4;\n", "p_atm = 10.**5; \t\t#N/m**2\n", "T1 = 293. \t\t\t#K\n", "D2 = 0.025; \t\t\t#m\n", "p1 = 140.*10**3; \t\t#N/m**2\n", "\n", "# Calculations and Results\n", "A2 = math.pi/4*D2**2;\n", "\n", "print (\"(i) Mass rate of flow of air when pressure in the math.tank is 140 kN/m2 (abs.)\")\n", "rho_1 = p1/R/T1;\n", "p2 = 10**5; \t\t\t#N/m**2\n", "\n", "m = A2*math.sqrt(2*y/(y-1)*p1*rho_1*((p2/p1)**(2/y) - (p2/p1)**((y+1)/y)));\n", "print (\"m = %.3f\")% (m), (\"kg/s\")\n", "\n", "print (\"(ii) Mass rate of flow of air when pressure in the math.tank is 300 kN/m2 (abs.)\")\n", "p1 = 300.*10**3; \t\t\t#N/m**2\n", "p2 = 10.**5; \t\t\t#N/m**2\n", "rho_1 = p1/R/T1;\n", "\n", "print (\"The pressure ratio p2/p1 being less than the critical ratio 0.528, the flow in the nozzle will be sonic\");\n", "\n", "m_max = 0.685*A2*math.sqrt(p1*rho_1);\n", "print (\"m_max = %.3f\")% (m_max), (\"kg/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Mass rate of flow of air when pressure in the math.tank is 140 kN/m2 (abs.)\n", "m = 0.149 kg/s\n", "(ii) Mass rate of flow of air when pressure in the math.tank is 300 kN/m2 (abs.)\n", "The pressure ratio p2/p1 being less than the critical ratio 0.528, the flow in the nozzle will be sonic\n", "m_max = 0.348 kg/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.17 page no : 890" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "p1 = 200.; \t\t\t#kN/m**2\n", "V1 = 170.; \t\t\t#m/s\n", "T1 = 473.; \t\t\t#K\n", "A1 = 0.001; \t\t#m**2\n", "R = 287.; \t\t\t#J/kg K\n", "cp = 1000.; \t\t#J/kg K\n", "y = 1.4;\n", "\n", "# Calculations and Results\n", "print (\"(i) Stagnation temperature (Ts) and stagnation pressure (ps)\")\n", "\n", "Ts = T1+V1**2/2/cp;\n", "print (\"Ts = %.3f\")% (Ts), (\"K\")\n", "\n", "ps = p1*(Ts/T1)**(y/(y-1));\n", "print (\"ps = %.3f\")% (ps), (\"kN/m**2\")\n", "\n", "print (\"(ii) Sonic velocity and Mach number at this section\")\n", "\n", "C1 = math.sqrt(y*R*T1);\n", "print (\"Sonic velocity = %.3f\")% (C1), (\"m/s\")\n", "\n", "M1 = V1/C1;\n", "print (\"Mach number = %.3f\")% (M1)\n", "\n", "print (\"(iii) Velocity, Mach number and flow area at outlet section where pressure is 110 kN/m2\")\n", "p2 = 110.; \t\t\t#kN/m**2\n", "M2 = math.sqrt(2/(y-1)*((ps/p2)**((y-1)/y) - 1));\n", "print (\"M2 = %.3f\")% (M2)\n", "\n", "T2 = Ts*(p2/ps)**((y-1)/y);\n", "C2 = math.sqrt(y*R*T2);\n", "V2 = M2*C2;\n", "print (\"V2 = %.3f\")% (V2), (\"m/s\")\n", "\n", "A2 = (p1*A1*V1*T2/T1/p2/V2)*10**6;\n", "print (\"A2 = %.3f\")% (A2), (\"mm**2\")\n", "\n", "\n", "print (\"(iv) Pressure (pt), temperature (Tt), velocity (Vt), and flow area (At) at throat of the nozzle\")\n", "Mt = 1.;\n", "Tt = Ts/(1+(y-1)/2*Mt**2);\n", "print (\"Tt = %.3f\")% (Tt), (\"K\")\n", "\n", "pt = ps*(Tt/Ts)**(y/(y-1));\n", "print (\"pt = %.3f\")% (pt), (\"kN/m**2\")\n", "\n", "Ct = math.sqrt(y*R*Tt);\n", "Vt = Mt*Ct;\n", "\n", "At = (p1*A1*V1*Tt/T1/pt/Vt)*10**6;\n", "print (\"At = %.3f\")% (At), (\"mm**2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Stagnation temperature (Ts) and stagnation pressure (ps)\n", "Ts = 487.450 K\n", "ps = 222.214 kN/m**2\n", "(ii) Sonic velocity and Mach number at this section\n", "Sonic velocity = 435.949 m/s\n", "Mach number = 0.390\n", "(iii) Velocity, Mach number and flow area at outlet section where pressure is 110 kN/m2\n", "M2 = 1.055\n", "V2 = 422.183 m/s\n", "A2 = 617.168 mm**2\n", "(iv) Pressure (pt), temperature (Tt), velocity (Vt), and flow area (At) at throat of the nozzle\n", "Tt = 406.208 K\n", "pt = 117.392 kN/m**2\n", "At = 615.673 mm**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.18 page no : 893" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "y = 1.4;\n", "p1 = 26.5; \t\t\t#kN/m**2\n", "rho_1 = 0.413; \t\t\t#kg/m**3\n", "M1 = 2.;\n", "R = 287.;\n", "\n", "# Calculations and Results\n", "M2 = math.sqrt(((y-1)*M1**2 + 2)/(2*y*M1**2 - (y-1)));\n", "print (\"Mach number M2 = %.3f\")% (M2)\n", "\n", "p2 = p1*(2*y*M1**2 - (y-1))/(y+1);\n", "print (\"p2 = %.3f\")% (p2), (\"kN/m**2\")\n", "\n", "rho_2 = rho_1*((y+1)*M1**2)/((y-1)*M1**2 + 2);\n", "print (\"density, rho_2 = %.3f\")% (rho_2), (\"kg/m**3\")\n", "\n", "T1 = p1*10**3/rho_1/R;\n", "print (\"T1 = %.3f\")% (T1), (\"K\")\n", "\n", "T2 = T1*((y-1)*M1**2 + 2)*(2*y*M1**2 - (y-1))/((y+1)**2*M1**2);\n", "print (\"T2 = %.3f\")% (T2), (\"K\")\n", "\n", "C1 = math.sqrt(y*R*T1);\n", "V1 = M1*C1;\n", "print (\"V1 = %.3f\")% (V1), (\"m/s\")\n", "\n", "C2 = math.sqrt(y*R*T2);\n", "V2 = M2*C2;\n", "print (\"V2 = %.3f\")% (V2), (\"m/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mach number M2 = 0.577\n", "p2 = 119.250 kN/m**2\n", "density, rho_2 = 1.101 kg/m**3\n", "T1 = 223.570 K\n", "T2 = 377.275 K\n", "V1 = 599.435 m/s\n", "V2 = 224.788 m/s\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.19 page no : 895" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "M1 = 1.5;\n", "p1 = 170.; \t\t\t#kN/m**2\n", "T1 = 296.; \t\t\t#K\n", "y = 1.4;\n", "\n", "# Calculations and Results\n", "print (\"(i) Pressure, temperature and Mach number downstream of the shock\")\n", "p2 = p1*(2*y*M1**2 - (y-1))/(y+1);\n", "print (\"p2 = %.3f\")% (p2), (\"kN/m**2\")\n", "\n", "T2 = T1*((y-1)*M1**2 + 2)*(2*y*M1**2 - (y-1))/(y+1)**2/M1**2;\n", "print (\"T2 = %.3f\")% (T2), (\"K\")\n", "\n", "M2 = math.sqrt(((y-1)*M1**2 + 2)/(2*y*M1**2 - (y-1)));\n", "print (\"M2 = %.3f\")% (M2)\n", "\n", "strength = p2/p1 - 1;\n", "print (\"Strength of stock = %.3f\")% (strength)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Pressure, temperature and Mach number downstream of the shock\n", "p2 = 417.917 kN/m**2\n", "T2 = 390.784 K\n", "M2 = 0.701\n", "Strength of stock = 1.458\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }