{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14 : Refrigeration Cycles" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.1 page no : 717" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T2 = 235; \t\t\t#K\n", "P = 1.3; \t\t\t#kW\n", "\n", "# Calculations and Results\n", "COP = 14000./P/60./60.;\n", "print (\"(i) C.O.P. of Carnot refrigerator = %.3f\")% (COP)\n", "\n", "T1 = T2/COP + T2;\n", "t1 = T1-273;\n", "print (\"(ii) Higher temperature of the cycle = %.3f\")% (t1), (\"0C\")\n", "\n", "print (\"(iii) Heat delivered as heat pump\")\n", "Qabs = 14000./60; \t\t\t#Heat absorbed\n", "W = P*60;\n", "Q = Qabs+W;\n", "print (\"Q = %.3f\")% (Q), (\"kJ/min\")\n", "\n", "COP = Q/W;\n", "print (\"COP of heat pump = %.3f\")% (COP)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) C.O.P. of Carnot refrigerator = 2.991\n", "(ii) Higher temperature of the cycle = 40.557 0C\n", "(iii) Heat delivered as heat pump\n", "Q = 311.333 kJ/min\n", "COP of heat pump = 3.991\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.2 page no : 718" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T1 = 308.; \t\t \t #K\n", "T2 = 258.; \t\t\t #K\n", "capacity = 12.; \t\t\t#tonne\n", "\n", "# Calculations and Results\n", "COP = T2/(T1-T2);\n", "print (\"(i) Co-efficient of performance = \"), (COP)\n", "\n", "\n", "print (\"(ii) Heat rejected from the system per hour\")\n", "W = capacity*14000./5.16;\n", "Q = capacity*14000.+W;\n", "print (\"Q = %.3f\")% (Q), (\"kJ/h\")\n", "\n", "P = W/60./60.;\n", "print (\"(iii) Power required = %.3f\")% (P),(\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Co-efficient of performance = 5.16\n", "(ii) Heat rejected from the system per hour\n", "Q = 200558.140 kJ/h\n", "(iii) Power required = 9.044 kW\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3 page no : 718" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T2 = 268.; \t\t\t#K\n", "T1 = 308.; \t\t\t#K\n", "Q = 29.; \t\t\t#Heat leakage from the surroundings into the cold storage in kW\n", "\n", "# Calculations\n", "COP_ideal = T2/(T1-T2);\n", "COP_actual = 1./3*COP_ideal;\n", "W = Q/COP_actual;\n", "\n", "# Results\n", "print (\"Power required = %.3f\")%(W), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power required = 12.985 kW\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4 page no : 719" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T1 = 293.; \t\t\t#K\n", "T2 = 265.; \t\t\t#K\n", "T0 = 273.; \t\t\t#K\n", "L = 335.; \t\t\t#Latent heat of ice in kJ/kg\n", "cpw = 4.18;\n", "\n", "# Calculations\n", "COP = T2/(T1-T2);\n", "Rn = cpw*(T1-T0)+L;\n", "m_ice = COP*3600./Rn;\n", "\n", "# Results\n", "print (\"ice formed per kWh = %.3f\")% (m_ice), (\"kg\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ice formed per kWh = 81.394 kg\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.5 page no : 719" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T1 = 291.; \t\t\t#K\n", "T2 = 265.; \t\t\t#K\n", "T0 = 273.; \t\t\t#K\n", "cpw = 4.18; \t\t#kJ/kg\n", "cpi = 2.09; \t\t#kJ/kg\n", "L = 334.; \t\t\t#kJ/kg\n", "m = 400.; \t\t\t#kg\n", "\n", "# Calculations\n", "COP = T2/(T1-T2);\n", "Rn = cpw*(T1-T0) + L + cpi*(T0-T2);\n", "W = Rn*m/COP/3600; \t\t\t#kJ/s\n", "\n", "# Results\n", "print (\"Least power = %.3f\")% (W), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Least power = 4.644 kW\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.6 page no : 720" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "cpw = 4.18; \t\t\t#kJ/kg\n", "\n", "print (\"(i) Quantity of ice produced\")\n", "t = 20.; \t\t\t#0C\n", "L = 335.; \t\t\t#kJ/kg\n", "capacity = 280.; \t#tonnes\n", "\n", "# Calculations and Results\n", "Q1 = cpw*t + L; \t\t\t#Heat to be extracted per kg of water (to form ice at 0\u00b0C)\n", "Rn = capacity*14000; \t\t#kJ/h\n", "m_ice = Rn*24./Q1/1000;\n", "\n", "print (\"Quantity of ice produced in 24 hours = %.3f\")% (m_ice), (\"tonnes\")\n", "\n", "print (\"(ii) Minimum power required = \"),\n", "T1 = 298.; \t\t\t#K\n", "T2 = 263.; \t\t\t#K\n", "\n", "COP = T2/(T1-T2);\n", "W = Rn/COP/3600.; \t\t\t#kJ/s\n", "print (\"Power required = %.3f\")% (W), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Quantity of ice produced\n", "Quantity of ice produced in 24 hours = 224.749 tonnes\n", "(ii) Minimum power required = Power required = 144.909 kW\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.7 page no : 720" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "cp1 = 1.25; \t\t\t#kJ/kg 0C\n", "cp2 = 2.93; \t\t\t#kJ/kg 0C\n", "L = 232. \t\t\t#kJ/kg\n", "T1 = -3. \t \t\t#0C\n", "T2 = -8. \t\t \t#0C\n", "T3 = 25. \t\t\t #0C\n", "\n", "\n", "# Calculations and Results\n", "Q1 = cp2*(T3-T1) + L + cp1*(T1-T2); \t\t\t#Heat removed in 8 hours from each kg of fish\n", "Q = Q1*20*1000./8 \t\t\t#Heat removed by the plant /min\n", "\n", "capacity = Q/14000.; \t\t\t#tonnes\n", "print (\"(i) Capacity of the refrigerating plant = %.3f\")% (capacity), (\"tonnes\")\n", "\n", "print (\"(ii) Carnot cycle C.O.P. between this temperature range.\")\n", "T1 = 298.; \t\t\t#K\n", "T2 = 265.; \t\t\t#K\n", "\n", "COP = T2/(T1-T2);\n", "print (\"COP of reversed carnot cycle = %.3f\")% (COP)\n", "\n", "\n", "print (\"(iii) Power required\")\n", "COP_actual = 1./3*COP;\n", "W = Q/COP_actual/3600; \t\t\t#kJ/s\n", "\n", "print (\"Power = %.3f\")% (W), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Capacity of the refrigerating plant = 57.195 tonnes\n", "(ii) Carnot cycle C.O.P. between this temperature range.\n", "COP of reversed carnot cycle = 8.030\n", "(iii) Power required\n", "Power = 83.094 kW\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.8 page no : 721" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "T1 = 1273.; \t\t#K\n", "T2 = 298.; \t\t\t#K\n", "T3 = 268.; \t\t\t#K\n", "T4 = 298.; \t\t\t#K\n", "\n", "# Calculations\n", "#Let Q2/Q1 = r1, r2 = Q3/Q4;\n", "r1 = 298./1273; \t\t#Q2/Q1\n", "r2 = 268./298; \t\t\t#Q3/Q4\n", "\n", "#Let Q4/Q1 = r\n", "r = (1.-r1)/(1-r2);\n", "\n", "# Results\n", "print (\"The ratio in which the heat pump and heat engine share the heating load = %.3f\")% (r)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio in which the heat pump and heat engine share the heating load = 7.608\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.9 page no : 724" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "y = 1.4;\n", "n = 1.35;\n", "cp = 1.003; \t\t#kJ/kg K\n", "p2 = 1.; \t\t\t#bar\n", "p1 = 8.; \t\t\t#bar\n", "T3 = 282.; \t\t\t#K\n", "T4 = 302.; \t\t\t#K\n", "T1 = T4;\n", "\n", "# Calculations\n", "T4 = T3*(p1/p2)**((n-1)/n);\n", "T2 = T1*(p2/p1)**((n-1)/n);\n", "Q1 = cp*(T3-T2); \t\t\t#Heat extracted from cold chamber per kg of air\n", "Q2 = cp*(T4-T1); \t\t\t#Heat rejected in the cooling chamber per kg of air\n", "cv = cp/y;\n", "R = cp-cv;\n", "W = n/(n-1)*R*((T4-T3) - (T1-T2));\n", "COP = Q1/W;\n", "\n", "# Results\n", "print (\"COP = %.3f\")% (COP)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "COP = 1.270\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.10 page no : 726" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "p1 = 1000.; \t\t\t#kPa\n", "p2 = 100. \t\t\t#kPa\n", "p4 = p1;\n", "p3 = p2;\n", "E = 2000. \t\t\t# Refrigerating effect produced in kJ/min \n", "T3 = 268.; \t \t\t#K\n", "T1 = 303.; \t\t \t#K\n", "y = 1.4;\n", "\n", "# Calculations and Results\n", "print (\"(i) Mass of air circulated per minute\")\n", "T2 = T1*(p2/p1)**((y-1)/y);\n", "e = cp*(T3-T2); \t\t\t#Refrigerating effect per kg; kJ/kg\n", "\n", "m = E/e;\n", "print (\"m = %.3f\")% (m), (\"kg/min\")\n", "\n", "\n", "print (\"(ii) Compressor work (Wcomp.), expander work (Wexp.) and cycle work (Wcycle)\")\n", "T4 = T3*(p4/p3)**((y-1)/y);\n", "\n", "Wcomp = y/(y-1)*m*R*(T4-T3);\n", "print (\"Compressor work = %.3f\")% (Wcomp), (\"kJ/min\")\n", "\n", "Wexp = y/(y-1)*m*R*(T1-T2);\n", "print (\"Expander work = %.3f\")% (Wexp), (\"kJ/min\")\n", "\n", "W_cycle = Wcomp-Wexp;\n", "print (\"Wcycle = %.3f\")% (W_cycle), (\"kJ/min\")\n", "\n", "\n", "print (\"(iii) C.O.P. and power required\")\n", "COP = E/W_cycle;\n", "print (\"COP = %.3f\")% (COP)\n", "\n", "P = W_cycle/60;\n", "print (\"Power required = %.3f\")% (P), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Mass of air circulated per minute\n", "m = 17.954 kg/min\n", "(ii) Compressor work (Wcomp.), expander work (Wexp.) and cycle work (Wcycle)\n", "Compressor work = 4491.675 kJ/min\n", "Expander work = 2630.279 kJ/min\n", "Wcycle = 1861.395 kJ/min\n", "(iii) C.O.P. and power required\n", "COP = 1.074\n", "Power required = 31.023 kW\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.11 page no : 727" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variables\n", "y = 1.4;\n", "cp = 1.003; \t\t#kJ/kg K\n", "T3 = 289.; \t\t\t#K\n", "T1 = 314.; \t\t\t#K\n", "p1 = 5.2; \t\t\t#bar\n", "p2 = 1.; \t\t\t#bar\n", "capacity = 6.; \t\t#tonnes\n", "R = 287.; \t\t\t#J/kg K\n", "l = 0.2; \t\t\t#m\n", "\n", "# Calculations and Results\n", "T4 = T3*(p1/p2)**((y-1)/y);\n", "T2 = T1*(p2/p1)**((y-1)/y);\n", "\n", "COP = T2/(T1-T2);\n", "print (\"(i) C.O.P. = %.3f\")%(COP)\n", "\n", "e = cp*(T3-T2); \t\t\t#Refrigerating effect per kg of air\n", "E = capacity*14000; \t\t#Refrigerating effect produced by the refrigerating machine in kJ/h\n", "\n", "m = E/e/60;\n", "print (\"(ii)mass of air in circulation = %.3f\")%(m),(\"kg/min\")\n", "\n", "\n", "V3 = m*R*T3/p2/10**5;\n", "print (\"(iii)Piston displacement of compressor\"),(\" = %.2f\")%(V3),(\"m^3/min\")\n", "\n", "V_swept = V3/2/240;\n", "\n", "\n", "V2 = m*R*T2/p2/10**5;\n", "V_swept = V2/2/240;\n", "print (\"Piston displacement of expander\"),(\" = %.3f\")%(V2),(\"m^3/min\")\n", "\n", "d_c = math.sqrt(V_swept/l/math.pi*4);\n", "print (\"(iv)Diameter or bore of the expander cylinder = %.0f\")%(d_c*1000), (\"mm\")\n", "\n", "d_c = math.sqrt(V_swept/l/math.pi*4);\n", "print (\"Diameter or bore of the compressor cylinder = %.0f\")%(d_c*1000),(\"mm\")\n", "\n", "W = capacity*14000/COP/3600;\n", "print (\"(v) Power required to drive the unit\"),(\" = %.3f\")%(W),(\"kW\")\n", "\n", "# Answers are slightly different because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) C.O.P. = 1.662\n", "(ii)mass of air in circulation = 15.016 kg/min\n", "(iii)Piston displacement of compressor = 12.45 m^3/min\n", "Piston displacement of expander = 8.449 m^3/min\n", "(iv)Diameter or bore of the expander cylinder = 335 mm\n", "Diameter or bore of the compressor cylinder = 335 mm\n", "(v) Power required to drive the unit = 14.039 kW\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.12 page no : 744" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "m = 6.; \t\t\t#kg/min\n", "n_relative = 0.50; \n", "cpw = 4.187; \t\t\t#kJ/kg K\n", "L = 335.; \t\t\t#kJ/kg\n", "\n", "h_f2 = 31.4; \t\t\t#kJ/kg\n", "h_fg2 = 154.; \t\t\t#kJ/kg\n", "h_f3 = 59.7; \t\t\t#kJ/kg\n", "h_fg3 = 138.; \t\t\t#kJ/kg\n", "h_f4 = 59.7; \t\t\t#kJ/kg\n", "x2 = 0.6;\n", "s_f3 = 0.2232; \t\t\t#kJ/kg K\n", "s_f2 = 0.1251; \t\t\t#kJ/kg K\n", "T2 = 268.; \t\t\t#K\n", "T3 = 298.; \t\t\t#K\n", "\n", "# Calculations\n", "h2 = h_f2+x2*h_fg2;\n", "x3 = ((s_f2-s_f3)+x2*(h_fg2/T2))*T3/h_fg3;\n", "h3 = h_f3+x3*h_fg3;\n", "h1 = h_f4;\n", "COP_th = (h2-h1)/(h3-h2); \t\t\t#Theoritical COP\n", "COP = n_relative*COP_th;\n", "Q = cpw*(20-0) + L; \t\t\t#Heat extracted from 1 kg of water at 20\u00b0C for the formation of 1 kg of ice at 0\u00b0C\n", "m_ice = COP*m*(h3-h2)/Q*60*24/1000; \t\t\t#in 24 hours\n", "\n", "# Results\n", "print (\"m_ice = %.3f\")%(m_ice), (\"tonnes\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "m_ice = 0.661 tonnes\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.13 page no : 745" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "L = 335.; \t\t\t #kJ/kg\n", "h3 = 1319.22; \t\t\t#kJ/kg\n", "h1 = 100.04; \t\t\t#kJ/kg\n", "h4 = h1;\n", "s_f2 = -2.1338; \t\t#kJ/kg K\n", "s_g2 = 5.0585; \t\t\t#kJ/kg K\n", "s_g3 = 4.4852; \t\t\t#kJ/kg K\n", "h_f2 = -54.56; \t\t\t#kJ/kg\n", "h_g2 = 1304.99; \t\t#kJ/kg\n", "\n", "# Calculations\n", "x2 = (s_g3-s_f2)/(s_g2-s_f2);\n", "h2 = h_f2+x2*(h_g2-h_f2);\n", "COP_theoritical = (h2-h1)/(h3-h2);\n", "COP_actual = 0.62*COP_theoritical;\n", "RE = COP_actual*(h3-h2); \t\t\t#Actual refrigerating effect per kg\n", "Q = 28.*1000.*L/24./3600; \t\t\t#Heat to be extracted per second\n", "m = Q/RE; \t\t\t#Mass of refrigerant circulated per second\n", "W = m*(h3-h2);\n", "\n", "# Results\n", "print (\"Power required = %.3f\")%(W), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power required = 19.577 kW\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.14 page no : 747" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "h_f2 = 158.2; \t\t\t#kJ/kg\n", "x2 = 0.62;\n", "h_fg2 = 1280.8;\n", "h1 = 298.9; \t\t\t#kJ/kg\n", "h_f4 = h1;\n", "s_f2 = 0.630; \t\t\t#kJ/kg K\n", "T2 = 268.; \t\t\t #K\n", "T3 = 298.; \t\t\t #K\n", "s_f3 = 1.124; \t\t\t#kJ/kg K\n", "h_fg3 = 1167.1; \t\t#kJ/kg\n", "m = 6.4; \t\t\t #kg/min\n", "cp = 4.187;\n", "L = 335.; \t\t\t #kJ/kg\n", "h_f3 = 298.9; \t\t\t#kJ/kg\n", "\n", "# Calculations\n", "h2 = h_f2+x2*h_fg2;\n", "x3 = ((s_f2-s_f3)+x2*h_fg2/T2)/h_fg3*T3;\n", "h3 = h_f3+x3*h_fg3;\n", "COP_theoritical = (h2-h1)/(h3-h2);\n", "COP_actual = 0.55*COP_theoritical;\n", "W1 = 81.87 #h3-h2; \t\t\t#Work done per kg of refrigerant\n", "\n", "W = m*W1/60; \t\t\t#Work done per second kJ/s\n", "Q = round(15*cp+L,1);\n", "m_ice = W*3600.*24/Q;\n", "\n", "\n", "# Results\n", "print (\"Amount of ice formed in 24 hours = %.3f\")% (m_ice), (\"kg\")\n", "\n", "# Note : Answer is slightly different because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Amount of ice formed in 24 hours = 1896.717 kg\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.15 page no : 748" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "RE = 5*14000./3600; \t#Total refrigeration produced in kg/s\n", "h2 = 183.19; \t\t\t#kJ/kg\n", "h3 = 209.41; \t\t\t#kJ/kg\n", "h4 = 74.59; \t\t\t#kJ/kg\n", "h1 = h4;\n", "\n", "# Calculations and Results\n", "RE_net = h2-h1; \t\t\t#Net refrigerating effect produced per kg\n", "m = RE/RE_net; \n", "print (\"(i) The refrigerant flow rate\"),(\" = %.3f\")% (m), (\"kg/s\")\n", "\n", "\n", "COP = (h2-h1)/(h3-h2);\n", "print (\"(ii) The C.O.P. = %.3f\")% (COP)\n", "\n", "\n", "P = m*(h3-h2);\n", "print (\"(iii) The power required to drive the compressor = %.3f\")%(P), (\"kW\")\n", "\n", "rate = m*(h3-h4);\n", "print (\"(iv) The rate of heat rejection to the condenser = %.3f\")%(rate),(\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The refrigerant flow rate = 0.179 kg/s\n", "(ii) The C.O.P. = 4.142\n", "(iii) The power required to drive the compressor = 4.695 kW\n", "(iv) The rate of heat rejection to the condenser = 24.139 kW\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.16 page no : 749" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print (\"(iii)\")\n", "\n", "# Variables\n", "h2 = 344.927; \t\t\t#kJ/kg\n", "h4 = 228.538; \t\t\t#kJ/kg\n", "h1 = h4;\n", "cpv = 0.611; \t\t\t#/kJ/kg0C\n", "# s2 = s3\n", "t3 = 39.995; \t\t\t#0C\n", "\n", "# Calculations\n", "h3 = 363.575+cpv*(t3-30);\n", "Rn = h2-h1;\n", "W = h3-h2;\n", "COP = Rn/W;\n", "\n", "# Results\n", "print (\"COP = %.3f\")% (COP)\n", "\n", "cp = 2.0935; \t\t\t#kJ/kg 0C\n", "Q = 2400./24./3600*(4.187*(15-0)+335+cp*(0-(-5)))\n", "\n", "W = Q/COP;\n", "print (\"Work required = %.3f\")% (W), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(iii)\n", "COP = 4.702\n", "Work required = 2.412 kW\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.17 page no : 751" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "h2 = 352.; \t\t\t#kJ/kg\n", "h3 = 374.; \t\t\t#kJ/kg\n", "h4 = 221.; \t\t\t#kJ/kg\n", "h1 = h4;\n", "v2 = 0.08; \t\t\t#m**3/kg\n", "rpm = 500.;\n", "D = 0.2;\n", "L = 0.15;\n", "n_vol = 0.85;\n", "\n", "# Calculations\n", "RE = h2-h1;\n", "V = math.pi/4*D**2*L*rpm*2*n_vol;\n", "m = V/v2;\n", "\n", "# Results\n", "print (\"(ii)Mass of refrigerant circulated per minute = %.3f\")% (m), (\"kg/min\")\n", "\n", "cc = 50.*(h2-h1)*60./14000.;\n", "print (\"(iii) Cooling capacity in tonnes of refrigeration = %.3f\")%(cc), (\"TR\")\n", "\n", "COP = (h2-h1)/(h3-h2);\n", "print (\"(iv)COP = %.3f\")% (COP)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(ii)Mass of refrigerant circulated per minute = 50.069 kg/min\n", "(iii) Cooling capacity in tonnes of refrigeration = 28.071 TR\n", "(iv)COP = 5.955\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.18 page no : 751" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "te = -10.; \t\t\t#0C\n", "tc = 40.; \t\t\t#0C\n", "h3 = 220.; \t\t\t#kJ/kg\n", "h2 = 183.1; \t\t\t#kJ/kg\n", "h1 = 74.53; \t\t\t#kJ/kg\n", "h_f4 = 26.85; \t\t\t#kJ/kg\n", "m = 1.; \t\t\t#kg\n", "\n", "# Calculations and Results\n", "COP = (h2-h1)/(h3-h2);\n", "print (\"(i) The C.O.P. the cycle = %.3f\")%(COP)\n", "\n", "RC = m*(h2-h1);\n", "print (\"(ii) Refrigerating capacity = %.3f\")%(RC),(\"kJ/min\")\n", "\n", "CP = m*(h3-h2)/60;\n", "print (\"Compressor power = %.3f\")% (CP), (\"kJ/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The C.O.P. the cycle = 2.942\n", "(ii) Refrigerating capacity = 108.570 kJ/min\n", "Compressor power = 0.615 kJ/s\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.19 page no : 752" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "h2 = 178.61; \t\t\t#kJ/kg\n", "h3a = 203.05; \t\t\t#kJ/kg\n", "h_f4 = 74.53; \t\t\t#kJ/kg\n", "h1 = h_f4;\n", "s3a = 0.682; \t\t\t#kJ/kg K\n", "s2 = 0.7082; \t\t\t#kJ/kg K\n", "cp = 0.747; \t\t\t#kJ/kg K\n", "T3a = 313.; \t\t\t#K\n", "CE = 20.; \t\t\t #Cooling effect\n", "C = 0.03;\n", "v_g = 0.1088;\n", "p_d = 9.607;\n", "p_s = 1.509;\n", "n = 1.13;\n", "\n", "# Calculations\n", "m = CE/(h2-h1);\n", "T3 = T3a*math.e**((s2-s3a)/cp)\n", "h3 = h3a+cp*(T3-T3a);\n", "P = m*(h3-h2);\n", "\n", "# Results\n", "print (\"Power required by the machine = %.3f\")%(P), (\"kW\")\n", "\n", "n_vol = 1+C-C*(p_d/p_s)**(1./n); \t\t\t#Volumetric efficiency\n", "V1 = m*v_g; \t\t\t #volume of refrigerant at the intake conditions\n", "V_swept = V1/n_vol;\n", "\n", "V = V_swept*60./300;\n", "print (\"Piston print lacement = %.5f\")% (V), (\"m**3\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power required by the machine = 6.300 kW\n", "Piston print lacement = 0.00478 m**3\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.20 page no : 754" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "h2 = 1450.22; \t\t\t#kJ/kg\n", "h3a = 1488.57; \t\t\t#kJ/kg\n", "h_f4 = 366.072; \t\t#kJ/kg\n", "cpl2 = 4.556; \t\t\t#kJ/kg K\n", "cpv1 = 2.492; \t\t\t#kJ/kg K\n", "cpv2 = 2.903; \t\t\t#kJ/kg K\n", "T1 = 303.; \t\t\t #K\n", "T2 = 308.; \t\t\t #K\n", "s3a = 5.2086; \t\t\t#kJ/kg K\n", "s2 = 5.755; \t\t\t#kJ/kg K\n", "T3a = 308.; \t\t\t#K\n", "N = 1000.;\n", "\n", "# Calculations\n", "h_f4a = h_f4-cpl2*(T2-T1);\n", "h1 = h_f4a;\n", "T3 = T3a*math.e**((s2-s3a)/cpv2);\n", "h3 = h3a+cpv2*(T3-T3a);\n", "m = 50./(h2-h1);\n", "\n", "# Results\n", "P = m*(h3-h2);\n", "print (\"(i) Power required = %.3f\")%(P), (\"kW\")\n", "\n", "print (\"(ii) Cylinder dimensions \")\n", "D = (m*4*60/math.pi/1.2/N/0.417477)**(1./3);\n", "print (\"Diameter of cylinder = %.3f\")% (D), (\"m\")\n", "\n", "L = 1.2*D;\n", "print (\"Length of the cylinder = %.3f\")% (L), (\"m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Power required = 10.096 kW\n", "(ii) Cylinder dimensions \n", "Diameter of cylinder = 0.190 m\n", "Length of the cylinder = 0.228 m\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.21 page no : 756" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "cooling_load = 150.; #W\n", "n_vol = 0.8;\n", "N = 720.; \t\t\t#rpm\n", "h2 = 183.; \t\t\t#kJ/kg\n", "h1 = 74.5; \t\t\t#kJ/kg\n", "v2 = 0.08; \t\t\t#m**3/kg\n", "\n", "# Calculations\n", "m = cooling_load/(108.5*1000);\n", "d = m*v2/n_vol;\n", "\n", "# Results\n", "print (\"Mass flow rate of the refrigerant = %.6f\")% (m),(\"kJ/s\")\n", "\n", "print (\"Displacement volume of the compressor = %6f\")% (d), (\"m**3/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flow rate of the refrigerant = 0.001382 kJ/s\n", "Displacement volume of the compressor = 0.000138 m**3/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.22 page no : 757" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "h2 = 183.2; \t\t\t#kJ/kg\n", "h3 = 222.6; \t\t\t#kJ/kg\n", "h4 = 84.9 \t\t\t#kJ/kg\n", "v2 = 0.0767; \t\t\t#m**3/kg\n", "v3 = 0.0164; \t\t\t#m**3/kg\n", "v4 = 0.00083; \t\t\t#m**3/kg\n", "\n", "# Calculations\n", "V = 1.5*1000*10**(-6); \t\t\t#Piston print lacement volume m**3/revolution\n", "n_vol = 0.80;\n", "\n", "print (\"(i) Power rating of the compressor (kW)\")\n", "discharge = V*1600*n_vol; \t\t\t#Compressor discharge\n", "m = discharge/v2;\n", "\n", "P = m/60*(h3-h2); \t\t\t#kW\n", "print (\"Power = %.3f\")% (P), (\"kW\")\n", "\n", "\n", "RE = m/60*(h2-h4);\n", "print (\"(ii) Refrigerating effect = %.3f\")% (RE), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Power rating of the compressor (kW)\n", "Power = 16.438 kW\n", "(ii) Refrigerating effect = 41.012 kW\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.23 page no : 757" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables\n", "COP = 6.5;\n", "W = 50.; \t\t\t#kW\n", "h3a = 201.45; \t\t\t#kJ/kg\n", "h_f4 = 69.55; \t\t\t#kJ/kg\n", "h1 = h_f4;\n", "h2 = 187.53; \t\t\t#kJ/kg\n", "cp = 0.6155; \t\t\t#kJ/kg\n", "t3a = 35.; \t\t\t#0C\n", "\n", "# Calculations\n", "RC = W*COP; \t\t\t#Refrigerating capacity\n", "Q1 = h2-h_f4; \t\t\t#Heat extracted per kg of refrigerant\n", "rate = RC/Q1; \t\t\t#Refrigerant flow rate\n", "Q2 = W/rate; \t\t\t#Heat input per kg\n", "h = h2+Q2; \t\t\t#Enthalpy of vapour after compression\n", "Q = h-h3a; \t\t\t#Superheat\n", "\n", "t3 = Q/cp+t3a;\n", "\n", "# Results\n", "print (\"The refrigerant temperature = %.3f\")% (t3), (\"\u00b0C\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The refrigerant temperature = 41.874 \u00b0C\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.24 page no : 758" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variables\n", "Q1 = 500.; \t\t\t#total heating requirement of 500 kJ/min\n", "n_compressor = 0.8;\n", "s1 = 0.7035; \t\t\t#kJ/kg K\n", "s2 = 0.6799; \t\t\t#kJ/kg K\n", "T2 = 322.31; \t\t\t#K\n", "cp = 0.7; \t\t\t #kJ/kg K\n", "h_v2 = 206.24; \t\t\t#kJ/kg\n", "h_l2 = 84.21; \t\t\t#kJ/kg\n", "h_v1 = 182.07 \t\t\t#kJ/kg\n", "\n", "# Calculations\n", "Q2 = Q1/n_compressor; \t\t\t#Heat rejected by the cycle\n", "\n", "#Entropy of dry saturated vapour at 2 bar = Entropy of superheated vapour at 12 bar\n", "T = T2*math.e**((s1-s2)/cp);\n", "\n", "H = h_v2+cp*(T-T2); \t\t\t#Enthalpy of superheated vapour at 12 bar\n", "Q3 = H-h_l2; \t\t\t#Heat rejected per cycle\n", "m = Q2/Q3; \t\t\t#kg/min\n", "W = m*(H-h_v1)/60; \t\t\t#kW\n", "W_actual = W/n_compressor;\n", "\n", "# Results\n", "print (\"Power = %.3f\")% (W_actual), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power = 3.201 kW\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.25 page no : 759" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "h2a = 183.2; \t\t\t#kJ/kg K\n", "cpv = 0.733; \t\t\t#Vapour specific heat in kJ/kg K\n", "cpl = 1.235; \t\t\t#Liquid specific heat in kJ/kg K\n", "s2a = 0.7020; \t\t\t#Entropy of vapour in kJ/kg K\n", "s3a = 0.6854; \t\t\t#Entropy of vapour in kJ/kg K\n", "T2 = 270.; \t\t\t #K\n", "T2a = 263.; \t\t\t#K\n", "T3a = 303.; \t\t\t#K\n", "h3a = 199.6; \t\t\t#kJ/kg\n", "h_f4 = 64.6; \t\t\t#kJ/kg\n", "dT4 = 6.; \t\t\t #dT4 = T4-T4a\n", "v2a = 0.0767;\n", "n = 2.; \t\t\t #number of cylinder\n", "\n", "# Calculations and Results\n", "h2 = h2a+cpv*(T2-T2a);\n", "s2 = s2a+cpv*math.log(T2/T2a);\n", "T3 = T3a*math.e**((s2-s3a)/cpv);\n", "h3 = h3a+cpv*(T3-T3a);\n", "h_f4a = h_f4-cpl*dT4;\n", "h1 = h_f4a;\n", "v2 = v2a/T2a*T2;\n", "\n", "RE = h2-h1;\n", "print (\"(i) Refrigerating effect per kg = \"), (RE), (\"kJ/kg\")\n", "\n", "m = 2400/RE;\n", "print (\"(ii) Mass of refrigerant to be circulated per minute = %.3f\")% (m), (\"kg/min\")\n", "\n", "v = m*v2;\n", "print (\"(iii) Theoretical piston print lacement per minute = %.3f\")%(v), (\"m**3/min\")\n", "\n", "P = m/60*(h3-h2);\n", "print (\"(iv) Theoretical power required to run the compressor = %.3f\")% (P), (\"kW\")\n", "\n", "Q = m*(h3-h_f4a);\n", "print (\"(v) Heat removed through the condenser per min = %.3f\")% (Q), (\"kJ/min\")\n", "\n", "print (\"(vi) Theoretical bore (d) and stroke (l)\")\n", "d = (v/n/math.pi*4/1.25/1000)**(1./3)*1000;\n", "print (\"Theroritical bore = %.3f\")% (d), (\"mm\")\n", "\n", "l = 1.25*d;\n", "print (\"stroke = %.3f\")% (l), (\"mm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Refrigerating effect per kg = 131.141 kJ/kg\n", "(ii) Mass of refrigerant to be circulated per minute = 18.301 kg/min\n", "(iii) Theoretical piston print lacement per minute = 1.441 m**3/min\n", "(iv) Theoretical power required to run the compressor = 6.833 kW\n", "(v) Heat removed through the condenser per min = 2809.995 kJ/min\n", "(vi) Theoretical bore (d) and stroke (l)\n", "Theroritical bore = 90.202 mm\n", "stroke = 112.752 mm\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.26 page no : 761" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "h2 = 1597.; \t\t\t#kJ/kg\n", "h3 = 1790.; \t\t\t#kJ/kg\n", "h4 = 513.; \t\t\t#kJ/kg\n", "h1 = h4;\n", "t3 = 58.; \t\t\t#0C\n", "x1 = 0.13;\n", "tc = 27.; \t\t\t#0C\n", "capacity = 10.5; \t\t\t#tonnes\n", "\n", "# Calculations and Results\n", "t = t3-tc;\n", "print (\"(i) Condition of the vapour at the outlet of the compressor = \"), (t), (\"C\")\n", "\n", "print (\"(ii) Condition of vapour at entrance to evaporator = \"), (x1)\n", "\n", "COP = (h2-h1)/(h3-h2);\n", "print (\"(iii)COP = %.3f\") %(COP)\n", "\n", "P = capacity*14000./COP/3600;\n", "print (\"(iv) Power required = %.3f\")% (P), (\"kW\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Condition of the vapour at the outlet of the compressor = 31.0 C\n", "(ii) Condition of vapour at entrance to evaporator = 0.13\n", "(iii)COP = 5.617\n", "(iv) Power required = 7.270 kW\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.27 page no : 762" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Variables\n", "h2 = 615.; \t\t\t#kJ/kg\n", "h3 = 664.; \t\t\t#kJ/kg\n", "h4 = 446.; \t\t\t#kJ/kg\n", "h1 = h4;\n", "v2 = 0.14; \t\t\t#m**3/kg\n", "capacity = 20.; \t#tonnes\n", "n = 6.; \t\t\t#number of cylinder\n", "\n", "# Calculations and Results\n", "RE = h2-h1;\n", "print (\"(i) Refrigerating effect per kg = \"), (RE), (\"kJ/kg\")\n", "\n", "m = capacity*14000./RE/60.;\n", "print (\"(ii) Mass of refrigerant to be circulated per minute = %.3f\")% (m), (\"kg/min\")\n", "\n", "v = v2*m;\n", "print (\"(iii) Theoretical piston print lacement = %.3f\")% (v), (\"m**3/min\")\n", "\n", "P = m/60*(h3-h2);\n", "print (\"(iv) Theoretical power = %.3f\")% (P), (\"kW\")\n", "\n", "COP = (h2-h1)/(h3-h2);\n", "print (\"(v)COP = %.3f\")% (COP)\n", "\n", "Q = m*(h3-h4);\n", "print (\"(vi) Heat removed through the condenser = %.3f\")% (Q), (\"kJ/min\")\n", "\n", "print (\"(vii) Theoretical print lacement per minute per cylinder\")\n", "\n", "d = (v/n*4/math.pi/950.)**(1./3)*1000.;\n", "print (\"Diameter of cylinder = %.3f\")% (d), (\"mm\")\n", "\n", "l = d;\n", "print (\"Stroke length = %.3f\")% (l), (\"mm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Refrigerating effect per kg = 169.0 kJ/kg\n", "(ii) Mass of refrigerant to be circulated per minute = 27.613 kg/min\n", "(iii) Theoretical piston print lacement = 3.866 m**3/min\n", "(iv) Theoretical power = 22.551 kW\n", "(v)COP = 3.449\n", "(vi) Heat removed through the condenser = 6019.724 kJ/min\n", "(vii) Theoretical print lacement per minute per cylinder\n", "Diameter of cylinder = 95.227 mm\n", "Stroke length = 95.227 mm\n" ] } ], "prompt_number": 30 } ], "metadata": {} } ] }