{ "metadata": { "name": "", "signature": "sha256:55c55de869585c95b66b35484f9ada77cb90e10b18096bd3c44fa78bdf53f425" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 : Work and Heat Transfer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1 Page No : 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "V1 = 100.; \t\t\t# Initial velocity in m/s\n", "g = 9.81; \t\t\t# Acceleration due to gravity in m/s2\n", "z1 = 100.; \t\t\t# Initial elevation in m\n", "\n", "# Calculation\n", "V = math.sqrt(((2*g*z1)+(V1)**2)); \t\t\t# Final velocity in m/s2\n", "\n", "# Results\n", "print \"The velocity of the object just before ir hits the ground is %.1f m/s\"%V\n", "\n", "# note : incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of the object just before ir hits the ground is 109.4 m/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2 Page No : 57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "dV = 0.5; \t\t\t# Change in volume in m3\n", "P = 101.325e03; \t\t\t# Atmospheric pressure in N/m2\n", "\n", "# Calculation\n", "Wd = P*dV; \t\t\t# Work done in J\n", "\n", "# Results\n", "print \"The amount of work done upon the atmosphere by the ballon is %.2f kJ\"%(Wd/1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The amount of work done upon the atmosphere by the ballon is 50.66 kJ\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 Page No : 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "dV = 0.6; \t\t\t# Change in volume in m3\n", "P = 101.325e03; \t# Atmospheric pressure in N/m2\n", "\n", "# Calculation\n", "Wd = P*dV; \t\t\t# Work done in J\n", "\n", "# Results\n", "print \"The print lacement work done by the air is %.1f KJ\"%(Wd/1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The print lacement work done by the air is 60.8 KJ\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 Page No : 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "T = 1.275e-03; \t\t\t# Torque acting against the fluid in N\n", "N = 10000.; \t\t\t# Number of revolutions\n", "W1 = 2*math.pi*T*N; \t\t\t# Work done by stirring device upon the system\n", "P = 101.325e03; \t\t\t# Atmospheric pressure in N/m2\n", "d = 0.6; \t\t\t# Piston diameter in m\n", "\n", "# Calculation\n", "A = (math.pi/4.)*(d)**2; \t\t\t# Piston area in m\n", "L = 0.80; \t\t\t # Displacement of diameter in m\n", "W2 = (P*A*L)/1000.; \t\t\t# Work done by the system on the surroundings i KJ\n", "W = -W1+W2; \t\t\t# Net work tranfer for the system\n", "\n", "# Results\n", "print \"The Net work tranfer for the system is %.1f KJ\"%W\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Net work tranfer for the system is -57.2 KJ\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 Page No : 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "ad = 5.5e-04; \t\t\t# Area of indicator diagram\n", "ld = 0.06; \t\t\t# Length of diagram\n", "k = 147e06; \t\t\t# Spring consmath.tant in MPa/m\n", "w = 150.; \t\t\t# Speed of engine\n", "L = 1.2 ; \t\t\t# Stroke of piston\n", "d = 0.8; \t\t\t# Diameter of the cylinder in m\n", "\n", "# Calculation\n", "A = (math.pi/4)*(0.8**2); \t\t\t# Area of cylinder\n", "Pm = (ad/ld)*k; \t\t\t# Effective pressure\n", "W1 = Pm*L*A*w; \t\t\t# Work done in 1 minute\n", "W = (12*W1)/60; \t\t\t# The rate of work transfer gas to the piston in MJ/s\n", "\n", "# Results\n", "print \"The rate of work transfer gas to the piston is %.0f kw\"%(round(W/1000,-2))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of work transfer gas to the piston is 24400 kw\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 Page No : 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "Tm = 1535.; \t\t\t# Melting point of iron on degree\n", "Ti = 15.; \t\t\t# Initial temperature\n", "Tf = 1650.; \t\t\t# Final temperature\n", "Lh = 270.e03; \t\t\t# Latent heat of iron in J/Kg\n", "ml = 29.93; \t\t\t# Atomic weight of iron in liquid state\n", "m = 56.; \t\t\t# Atomoc weight of iron\n", "sh = 0.502e03; \t\t\t# Specific heat of iron in J/Kg\n", "d = 6900.; \t\t\t# Density of molten metal in kg/m3\n", "\n", "# Calculation and Results\n", "H = (Tm-Ti)*sh + Lh + (ml/m)*(Tf-Tm)*1000; \t\t\t# Heat required\n", "Mr = 5e03; \t \t\t# Melting rate in Kg/h\n", "Hr = H*Mr ; \t \t \t# Rate of heat suppy\n", "HrA = Hr/(0.7*3600) \t\t\t# Actual rate of heat supply\n", "print \"Rating of furnace would be %.2e\"%HrA,\"W\"\n", "\n", "V = (3*Mr)/d; \t\t\t# Volume required in m3\n", "d = ((V/2.)*(4/math.pi))**(1./3); \t\t\t# Diameter of cylinder of furnace in m\n", "l = 2*d; \t\t\t # Length of cylinder of furnace in m\n", "print \" Length of cylinder of furnace is %.2f m\"%l\n", "\n", "# rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rating of furnace would be 2.17e+06 W\n", " Length of cylinder of furnace is 2.23 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.7 Page No : 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "SH = 0.9; \t\t\t# Specific heat of alluminium in solid state \n", "L = 390.; \t \t\t# Latent heat\n", "aw = 27.; \t\t \t# Atomic weight\n", "D = 2400.; \t\t\t # Density in molten state\n", "Tf = 700.+273; \t\t\t# Final temperature\n", "Tm = 660.+273; \t\t\t# Melting point of aluminium\n", "Ti = 15.+273; \t\t\t# Intial temperature\n", "\n", "# Calculation\n", "HR = round(SH*(Tm-Ti)+L+(29.93/27)*(Tf-Tm),1); \t\t\t# Heat requires\n", "HS = round(HR/0.7,1) ; \t\t\t# Heat supplied\n", "RM = 217*1000*3600/HS ; \t\t\t# From the data of problem 3.7\n", "V = 2.18; \t\t\t# Volume\n", "M = V*D;\n", "\n", "# Results\n", "print \"Mass of alluminium that can be melted is %.2f\"%(M/1000),\"tonnes\"\n", "print \"Rate at which alluminium can be melted is %.2f\"%(RM/100000),\"tonnes/h\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of alluminium that can be melted is 5.23 tonnes\n", "Rate at which alluminium can be melted is 5.39 tonnes/h\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.8 Page No : 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "dd = 60e-06;\n", "mw = 1.;\n", "st = 0.07;\n", "dw = 1000.;\n", "dp = 15e-03;\n", "\n", "# Calculation\n", "N = (mw*6)/(math.pi*dd**3*dw);\n", "Af = math.pi*dd**2*N;\n", "S_L = 4/(dp*dw);\n", "W = st*(100-S_L);\n", "\n", "# Results\n", "print \"Work done during automization is %.2f J\"%W\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done during automization is 6.98 J\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.9 Page No : 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "dc = 40e-02;\n", "L = 30e-02;\n", "P = 1e05; \t\t\t# Pressure in Pascal\n", "I = 0.5;\n", "V = 24.;\n", "t = 15.*60; \t\t\t# in seconds\n", "\n", "# Calculation\n", "Wm = V*I*t;\n", "Ws = 0.9*Wm;\n", "W = P*(math.pi/4)*dc**2*L;\n", "\n", "# Results\n", "print \"Work input to the motor is %.1f kJ\"%(Wm/1000)\n", "print \"Work input to the stirrer is %.2f kJ\"%(Ws/1000)\n", "print \"Work done by the fluid on the atmosphere is %.2f kJ\"%(W/1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work input to the motor is 10.8 kJ\n", "Work input to the stirrer is 9.72 kJ\n", "Work done by the fluid on the atmosphere is 3.77 kJ\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.10 Page No : 63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "P1 = 100.\n", "P2 = 37.9\n", "P3 = 14.4;\n", "V1 = 0.1\n", "V2 = 0.2\n", "V3 = 0.4;\n", "\n", "# Calculation\n", "n1 = (math.log(P1/P2))/(math.log(V2/V1));\n", "n2 = (math.log(P2/P3))/(math.log(V3/V2));\n", "# n1 = n2\n", "W = ((P1*V1)-(P3*V3))/(n1-1);\n", "\n", "# Results\n", "print \"Work done by the system is %.1f kJ\"%W\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done by the system is 10.6 kJ\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.11 Page No : 63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P1 = 20*1.01325e05;\n", "V1 = 0.04\n", "V2 = 2*V1;\n", "n = 1.45;\n", "\n", "# Calculation\n", "P2 = round((V1/V2)**n*P1,-2)\n", "W12 = ((P1*V1)-(P2*V2))/(n-1);\n", "W23 = P2*(V2-V1);\n", "Wc = W12-W23;\n", "\n", "# Results\n", "print \"Work done in the cycle is %.2f kJ\"%(Wc/1000)\n", "\n", "# rounding off error. please check using calculator." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work done in the cycle is 18.61 kJ\n" ] } ], "prompt_number": 25 } ], "metadata": {} } ] }