{ "metadata": { "name": "", "signature": "sha256:69db660ca30a9a3baf1684d4ef5be81cf91d6088bb69eac31dc95900ca98814a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15 : Psychrometrics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.1 Page No : 618" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "Ps = 0.033363; \n", "P = 1.0132;\n", "\n", "# Calculation and Results\n", "W2 = (0.622*Ps)/(P-Ps);\n", "hfg2 = 2439.9; hf2 = 109.1; cpa = 1.005;\n", "hg = 2559.9; hw1 = hg;\n", "T2 = 25+273; T1 = 32+273;\n", "W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2);\n", "Pw = ((W1/0.622)*P)/(1+(W1/0.622));\n", "print \"Specific humidity is \",round(W1,4),\"kg vap./kg dry air\"\n", "print \"Partial pressure of water vapour is\",round(Pw,2),\"bar\"\n", "print \"Dew point temperature is\",24.1,\"degree\" \t\t\t# saturation temperature at 0.03 bar\n", "\n", "Psat = 0.048; \t\t\t# at 32 degree\n", "fi = Pw/Psat;\n", "print \"Relative humidity is\",round((fi*100),1),\"%\"\n", "mu = (Pw/Ps)*((P-Ps)/(P-Pw));\n", "print \"Degree of saturation is %.3f\"%mu\n", "Pa = P-Pw;\n", "Ra = 0.287; Tab = T1;\n", "rho_a = (Pa*100)/(Ra*Tab);\n", "print \"Density of dry air is\",round(rho_a,2),\"kg/m3\"\n", "rho_w = W1*rho_a;\n", "print \"Density of water vapour is\",round(rho_w,3),\"kg/m3\"\n", "ta = 32.; \n", "tdb = 32.; \n", "tdp = 24.1;\n", "h = cpa*ta + W1*(hg+1.88*(tdb-tdp));\n", "print \"Enthalpy of the mixture is\",round(h,2),\"kJ/kg\"\n", "\n", "# note: rounding off error is there." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Specific humidity is 0.0182 kg vap./kg dry air\n", "Partial pressure of water vapour is 0.03 bar\n", "Dew point temperature is 24.1 degree\n", "Relative humidity is 60.1 %\n", "Degree of saturation is 0.860\n", "Density of dry air is 1.12 kg/m3\n", "Density of water vapour is 0.02 kg/m3\n", "Enthalpy of the mixture is 79.06 kJ/kg\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.2 Page No : 620" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Ps = 2.339; P = 100;\n", "W2 = (0.622*Ps)/(P-Ps);\n", "hfg2 = 2454.1; hf2 = 83.96; cpa = 1.005;\n", "hw1 = 2556.3;\n", "T2 = 20.; \n", "T1 = 30.;\n", "\n", "# Calculation\n", "W1 = (cpa*(T2-T1)+(W2*hfg2))/(hw1-hf2);\n", "Pw1 = ((W1/0.622)*P)/(1+(W1/0.622));\n", "Ps1 = 4.246;\n", "fi = (Pw1/Ps1);\n", "\n", "# Results\n", "print \"Relative humidity is\",round((fi*100),1),\"%\"\n", "print \"Humidity ratio of inlet mixture is\",round(W1,4),\"kg vap./kg dry air\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relative humidity is 39.9 %\n", "Humidity ratio of inlet mixture is 0.0107 kg vap./kg dry air\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.3 Page No : 621" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Psat = 2.339;\n", "fi3 = 0.50;\n", "P = 101.3; \n", "cp = 1.005;\n", "\n", "# Calculation\n", "Pw3 = fi3*Psat;\n", "Pa3 = P-Pw3;\n", "W3 = 0.622*(Pw3/Pa3);\n", "Psa1_1 = 0.7156;\n", "Pw1 = 0.7156;\n", "Pa1 = P-Pw1;\n", "W1 = 0.622*(Pw1/Pa1); W2 = W1;\n", "T3 = 293.; \n", "Ra = 0.287; \n", "Pa3 = 100.13;\n", "va3 = (Ra*T3)/Pa3;\n", "SW = (W3-W1)/va3;\n", "t3 = 20.; \n", "tsat = 9.65; \n", "hg = 2518.; \n", "h4 = 10.;\n", "t2 = ( W3*(hg+1.884*(t3-tsat))-W2*(hg-1.884*tsat) + cp*t3 - (W3-W2)*h4 )/ (cp+W2*1.884)\n", "\n", "# Results\n", "print \"Mass of spray water required is\",round(SW,5),\"kg moisture/m3\"\n", "print \"Temperature to which air must be heated is\",round(t2,1),\"degree\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of spray water required is 0.00338 kg moisture/m3\n", "Temperature to which air must be heated is 27.1 degree\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.4 Page No : 622" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "h1 = 82.; \n", "h2 = 52.; \n", "h3 = 47.; \n", "h4 = 40.;\n", "W1 = 0.020; \n", "W2 = 0.0115; \n", "W3 = W2;\n", "v1 = 0.887;\n", "v = 3.33; \t\t\t# amount of free sir circulated\n", "\n", "# Calculation\n", "G = v/v1;\n", "CC = (G*(h1-h3)*3600.)/14000; \t\t\t# in tonns\n", "R = G*(W1-W3);\n", "\n", "# Results\n", "print \"Capacity of the cooling coil in tonnes\",round(CC,2),\"tonnes\"\n", "print \"Rate of water vapour removed is\",round(R,4),\"kg/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacity of the cooling coil in tonnes 33.79 tonnes\n", "Rate of water vapour removed is 0.0319 kg/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.5 Page No : 623" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "W1 = 0.0058\n", "W2 = 0.0187; \n", "h1 = 35.\n", "h2 = 90.\n", "\n", "# Calculation\n", "G12 = 1./2; \t\t\t# G12 = G1./G2 \n", "W3 = (W2+G12*W1)/(1+G12);\n", "h3 = (2./3)*h2 + (1./3)*h1;\n", "\n", "# Results\n", "print (\"Final condition of air is given by\")\n", "print \"W3 = \",W3,\"kg vap./kg dry air\"\n", "print \"h3 = \",round(h3,2),\"kJ/kg dry air\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Final condition of air is given by\n", "W3 = 0.0144 kg vap./kg dry air\n", "h3 = 71.67 kJ/kg dry air\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.6 Page no : 624" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables\n", "T2 = 38.5 # c\n", "o3 =11.2 # c\n", "\n", "# calculations\n", "h1h3 = 60.5 - 42.\n", "w1w2 = 0.0153 - 0.0083 \n", "\n", "# results\n", "print \"T2 = %.1f C\"%T2\n", "print \"h1 - h3 = %.1f kJ/kg dry air\"%h1h3\n", "print \"W1 - W2 = %.4f kg vap/kg dry air\"%w1w2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "T2 = 38.5 C\n", "h1 - h3 = 18.5 kJ/kg dry air\n", "W1 - W2 = 0.0070 kg vap/kg dry air\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.7 Page No : 624" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "h1 = 57.\n", "h2 = h1;\n", "h3 = 42.;\n", "W1 = 0.0065; \n", "W2 = 0.0088; \n", "W3 = W2;\n", "t2 = 34.5; \n", "v1 = 0.896;\n", "n = 1500.; \t\t\t# seating capacity of hall\n", "a = 0.3; \t\t\t# amount of out door air suplied\n", "\n", "# Calculation\n", "G = (n*a)/0.896 ; \t\t\t# Amount of dry air suplied\n", "CC = (G*(h2-h3)*60)/14000; \t\t\t# in tonns\n", "R = G*(W2-W1)*60;\n", "\n", "# Results\n", "print \"Capacity of the cooling coil in tonnes\",round(CC,2),\"tonnes\"\n", "print \"Capacity of humidifier\",round(R,1),\"kg/h\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacity of the cooling coil in tonnes 32.29 tonnes\n", "Capacity of humidifier 69.3 kg/h\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.8 Page No : 626" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "twb1 = 15.2; \n", "twb2 = 26.7; \n", "tw3 = 30.;\n", "h1 = 43.; \n", "h2 = 83.5; \n", "hw = 84.; \n", "mw = 1.15;\n", "W1 = 0.0088; \n", "W2 = 0.0213;\n", "hw3 = 125.8; \n", "hm = 84;\n", "G = 1.;\n", "\n", "# Calculation\n", "hw34 = (G/mw)*((h2-h1)-(W2-W1)*hw); \t\t\t# hw3-hw4\n", "tw4 = tw3-(hw34/4.19);\n", "A = tw4-twb1;\n", "R = tw3-tw4;\n", "x = G*(W2-W1);\n", "\n", "# Results\n", "print \"Temperature of water leaving the tower is\",round(tw4,1),\"degree\"\n", "print \"Fraction of water evoporated is\",x,\"kg/kg dry sir\"\n", "print \"Range of cooling water is\",round(R,1),\"degree\"\n", "print \"Approach of cooling water is\",round(A,1),\"degree\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature of water leaving the tower is 21.8 degree\n", "Fraction of water evoporated is 0.0125 kg/kg dry sir\n", "Range of cooling water is 8.2 degree\n", "Approach of cooling water is 6.6 degree\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.9 Page No : 627" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Psat1 = 0.01705; \n", "hg1 = 2528.9; \t\t\t# at 15 degree\n", "Psat2 = 0.05628; \n", "hg2 = 2565.3; \t\t\t# At 35 degree\n", "fi1 = 0.55;\n", "Pw1 = fi1*Psat1;\n", "fi2 = 1;\n", "Pw2 = fi2*Psat2;\n", "P = 1.;\n", "\n", "# Calculation\n", "W1 = (0.622*Pw1)/(P-Pw1);\n", "W2 = (0.622*Pw2)/(P-Pw2);\n", "MW = W2-W1;\n", "t2 = 35; t1 = 15; \n", "m_dot = 2.78;\n", "cpa = 1.005;\n", "h43 = 35*4.187; \t\t\t# h4-h3\n", "h5 = 14*4.187;\n", "m_dot_w = (-(W2-W1)*h5 - W1*hg1 + W2*hg2 + cpa*(t2-t1))/(h43) ;\n", "R = m_dot/m_dot_w ;\n", "MW = (W2-W1)*R;\n", "RWA = R*(1+W1);\n", "R = 0.287; T = 288; \n", "V_dot = (RWA*R*T)/(P*1e02) ; \t\t\t# Pressure is in kilo Pascal\n", "\n", "# Results\n", "print \"Make up water flow rate is\",round(MW,3),\"kg/s\"\n", "print \"Volume flow rate of air is\",round(V_dot,3),\"m3/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Make up water flow rate is 0.129 kg/s\n", "Volume flow rate of air is 3.437 m3/s\n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }