{ "metadata": { "name": "", "signature": "sha256:417bf1adea0580223c4d3786d62ed073e6155f8ed43cae453792997d33751fc8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 : Properties of Gases and Gas Mixtures" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1 Page No : 352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "# Part (a)\n", "P1 = 100.\n", "P2 = 50.;\n", "T1 = 273.+300;\n", "\n", "# Calculation and Results\n", "T2 = (P2/P1)*T1;\n", "R = 0.287\n", "cv = 0.718;\n", "V1 = 0.8;\n", "m = (P1*V1)/(R*T1);\n", "Q = m*cv*(T2-T1);\n", "print \"If the fluid is in the air\"\n", "print \"The final temperature is \",T2,\"K\"\n", "print \"The heat transferred is %.2f kJ/Kg\"%Q\n", "\n", "# Part (b)\n", "t2 = 273+81.33\n", "vf = 0.00103\n", "vg = 3.24;\n", "v1 = 2.6388\n", "u1 = 2810.4; \n", "x2 = (v1-vf)/(vg-vf);\n", "u2 = 340.42+(x2*2143.4);\n", "m_ = V1/v1;\n", "Q_ = m_*(u2-u1);\n", "\n", "print (\"\\nIf the fluid is in the steam\")\n", "print \"The final temperature is \",t2,\"K\"\n", "print \"The heat transferred is %.2f kJ/Kg\"%Q_\n", "\n", "# rounding off error. please check . value of m is wrong in book please check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If the fluid is in the air\n", "The final temperature is 286.5 K\n", "The heat transferred is -100.07 kJ/Kg\n", "\n", "If the fluid is in the steam\n", "The final temperature is 354.33 K\n", "The heat transferred is -219.62 kJ/Kg\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 Page No : 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "# Part (a)\n", "R = 0.287\n", "T1 = 273.+150\n", "v1 = 0.96\n", "v2 = 1.55\n", "Cp = 1.005;\n", "\n", "# Calculation and Results\n", "P = (R*T1)/v1;\n", "W = P*(v2-v1);\n", "T2 = (v2/v1)*T1;\n", "Q = Cp*(T2-T1);\n", "print (\"If the fluid is in the air\")\n", "print \"The final temperature is %.2f K\"%T2\n", "print \"The heat transferred is %.2f kJ\"%Q\n", "print \"Work done is %.2f kJ\"%W\n", "\n", "# Part (b)\n", "vg = 0.3928;\n", "P1 = 200e03;\n", "P2 = P1;\n", "h1 = 2768.8;\n", "t2 = 273+400; h2 = 3276.5;\n", "Q_ = h2-h1;\n", "W_ = P1*(v2-v1);\n", "print (\"\\nIf the fluid is in the steam\")\n", "print \"The final temperature is \",t2,\"K\"\n", "print \"The heat transferred is\",Q_,\"kJ\"\n", "print \"Work done is\",W_/1000,\"kJ\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If the fluid is in the air\n", "The final temperature is 682.97 K\n", "The heat transferred is 261.27 kJ\n", "Work done is 74.61 kJ\n", "\n", "If the fluid is in the steam\n", "The final temperature is 673 K\n", "The heat transferred is 507.7 kJ\n", "Work done is 118.0 kJ\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3 Page No : 355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "v = 16. ; \t\t\t# v = v1./v2\n", "P1 = 300e03;\n", "P2 = P1*v;\n", "R = 0.287\n", "T1 = 300+223;\n", "\n", "# Calculation and Results\n", "W12 = R*T1*math.log(1./v);\n", "\n", "print (\"If the fluid is in the air\")\n", "print \"The final pressure is \",P2/1000,\"kPa\"\n", "print \"The change in internal energy is\",0,\"kJ\"\n", "print \"Work done is %.2f kJ\"%W12\n", "\n", "# Part (b)\n", "v1 = 0.7664; u1 = 2728.7;\n", "v2 = v1/16;\n", "x2 = (v2-0.00125)/(0.05013);\n", "s2 = 2.7927+(x2*3.2802);\n", "s1 = 7.5165\n", "u2 = 1080.37+(x2*1522.0);\n", "du = u2-u1;\n", "T = 250+273;\n", "Q12 = T*(s2-s1)\n", "\n", "print (\"\\nIf the fluid is in the steam\")\n", "print \"The final temperature is \",T,\"K\"\n", "print \"The heat transferred is\",Q12,\"kJ/kg\"\n", "print \"The change in internal energy is\",du,\"kJ/kg \"\n", "\n", "# rounding off error. please check. value of x2 is wrong in book ." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If the fluid is in the air\n", "The final pressure is 4800.0 kPa\n", "The change in internal energy is 0 kJ\n", "Work done is -416.17 kJ\n", "\n", "If the fluid is in the steam\n", "The final temperature is 523 K\n", "The heat transferred is -874.095064273 kJ/kg\n", "The change in internal energy is -231.986493118 kJ/kg \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 Page No : 356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "# Part (a)\n", "P1 = 10.\n", "P2 = 1.;\n", "T1 = 273.+300;\n", "g = 1.4;\n", "\n", "# Calculation and Results\n", "T2 = T1*((P2/P1)**((g-1)/g));\n", "R = 0.287;\n", "W12 = ((R*T1)/(1-g))*(T2/T1-1);\n", "v2 = (R*T2)/(100*P2);\n", "\n", "print (\"If the fluid is in the air\")\n", "print \"The specific volume is %.3f m3/Kg\"%v2\n", "print \"The work done per kg of the fluid is %.2f kJ\"%W12\n", "\n", "# Part (b)\n", "u1 = 2793.2\n", "v1 = 0.2579\n", "s1 = 7.1228;\n", "x2 = (7.1228-1.3025)/6.0568;\n", "u2 = 417.33+(x2*2088.7);\n", "v2 = 0.001043+(0.96*1.693);\n", "W12 = u1-u2;\n", "print (\"\\nIf the fluid is in the steam\")\n", "print \"The specific volume is %.3f m3/Kg\"%v2\n", "print \"The work done per kg of the fluid is %.1f kJ\"%round(W12,-1)\n", "\n", "# note : rounding off error. please check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If the fluid is in the air\n", "The specific volume is 0.852 m3/Kg\n", "The work done per kg of the fluid is 198.19 kJ\n", "\n", "If the fluid is in the steam\n", "The specific volume is 1.626 m3/Kg\n", "The work done per kg of the fluid is 370.0 kJ\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 Page No : 357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "# Part (a)\n", "P1 = 10.\n", "P2 = 1.;\n", "T1 = 273.+200\n", "n = 1.15\n", "R = 0.287;\n", "\n", "# Calculation and Results\n", "v2 = ((R*T1)/(P1*100))*((P1/P2)**(1./1.15));\n", "v1 = ((R*T1)/(P1*100));\n", "T2 = T1*(P2/P1)*(v2/v1);\n", "cv = 0.716;\n", "Q = (cv+(R/(1-n)))*(T2-T1);\n", "\n", "print (\"If the fluid is in the air\")\n", "print \"The specific volume is %.4f m3/Kg\"%v2\n", "print \"The final temperature is %.1f K\"%T2\n", "print \"Heat transferred per kg is %.f kJ\"%Q\n", "\n", "# Part (b)\n", "v1 = 0.20596\n", "u1 = 2621.9;\n", "v2 = v1*(P1/P2)**(1./n);\n", "x2 = (v2-0.001043)/(1.694-0.001043);\n", "t2 = 99.62;\n", "W = ((P1*100*0.13575)-(P2*100*1.525))/(n-1);\n", "Q = 2366.1-u1+W;\n", "\n", "print (\"\\nIf the fluid is in the steam\")\n", "print \"The specific volume is %.3f m3/Kg\"%v2\n", "print \"The final temperature is \",t2,\"C\"\n", "print \"Heat transferred per kg is %.2f kJ\"%Q\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If the fluid is in the air\n", "The specific volume is 1.0053 m3/Kg\n", "The final temperature is 350.3 K\n", "Heat transferred per kg is 147 kJ\n", "\n", "If the fluid is in the steam\n", "The specific volume is 1.525 m3/Kg\n", "The final temperature is 99.62 C\n", "Heat transferred per kg is -367.47 kJ\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6 Page No : 359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "P0 = 1000.;\n", "T0 = 3.; \n", "V0 = 0.001;\n", "R = 287.;\n", "\n", "# Calculation\n", "n = (P0*V0)/(R*T0); \t\t\t# Number of moles\n", "\n", "# Process ab\n", "Wab = 0;\n", "cv = (3/2.)*R;\n", "Ta = T0; Tb = 300;\n", "Qab = n*cv*(Tb-Ta);\n", "Ua = 0; \t\t\t# Given internal energy\n", "Ub = Qab+Ua;\n", "Uab = Ub-Ua;\n", "print Qab\n", "# Process bc\n", "Qbc = 0\n", "Uc = 0\n", "Ubc = Uc-Ub;\n", "Wbc = -Ubc;\n", "# Process ca\n", "Tc = Ta;\n", "g = 5./3; \t\t\t# gamma\n", "Vcb = (Tb/Tc)**(3./2); \t\t\t# Vc/Vb\n", "Wca = -n*R*Tc*math.log(Vcb);\n", "Qca = Wca ;\n", "Uca = 0;\n", "\n", "# Results\n", "print \"Work done in the cycle is %.1f J\"%(Wbc)\n", "print \"Internal energy change in the cycle is\",Ub,\"J\"\n", "print \"Heat transfer in the cycle is %.2f\"%(Wca)\n", "\n", "# Part (b)\n", "e = (Qab+Qca)/Qab;\n", "print \"Thermal efficiency of the system is %.3f %%\"%(e)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "148.5\n", "Work done in the cycle is 148.5 J\n", "Internal energy change in the cycle is 148.5 J\n", "Heat transfer in the cycle is -6.91\n", "Thermal efficiency of the system is 0.953 %\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7 Page No : 360" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "Pa = 1.5; \n", "Ta = 273.+50; \n", "ca = 0.5;\n", "Pb = 0.6; \n", "Tb = 20.+273; \n", "mb = 2.5;\n", "R = 8.3143;\n", "\n", "# Calculation\n", "Va = (ca*R*Ta)/(Pa*1e03);\n", "ma = ca*28;\n", "Rn = R/28.;\n", "Vb = (mb*Rn*Tb)/(Pb*1e03);\n", "V = Va + Vb ;\n", "m = ma + mb ;\n", "Tf = 27+273.;\n", "P = (m*Rn*Tf)/V;\n", "g = 1.4;\n", "cv = Rn/(g-1);\n", "U1 = cv*(ma*Ta+mb*Tb);\n", "U2 = m*cv*Tf;\n", "Q = U2-U1;\n", "\n", "# Results\n", "print \"The final equillibrium pressure is %.3f MPa\"%(P/1000)\n", "print \"The amount of heat transferred to the surrounding is %.1f kJ\"%Q\n", "T_ = (ma*Ta+mb*Tb)/m ;\n", "P_ = (m*Rn*T_)/V;\n", "print \"If the vessel is perfectly inslulated\"\n", "print \"The final temperature is %.1f k\"%T_\n", "print \"The final pressure is %.2f MPa\"%(P_/1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The final equillibrium pressure is 1.169 MPa\n", "The amount of heat transferred to the surrounding is -226.0 kJ\n", "If the vessel is perfectly inslulated\n", "The final temperature is 318.5 k\n", "The final pressure is 1.24 MPa\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8 Page No : 361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "cp = 1.968; \n", "cv = 1.507;\n", "R_ = 8.314;\n", "V = 0.3; \n", "m = 2.; \n", "T1 = 5.+273; \n", "T2 = 100.+273;\n", "\n", "# Calculation\n", "R = cp-cv;\n", "mu = R_/R;\n", "Q12 = m*cv*(T2-T1);\n", "W12 = 0 ;\n", "U21 = Q12;\n", "H21= m*cp*(T2-T1);\n", "S21 = m*cv*math.log(T2/T1);\n", "\n", "# Results\n", "print \"Molecular weight and the gas constant of the gas are %.2f kJ/Kg mol and %.3f kJ/Kg K\"%(mu,R)\n", "print \"Work done\",0,\"kJ\"\n", "print \"The heat transferred %.2f kJ\"%Q12\n", "print \"The change in internal energy \",U21,\"kJ\"\n", "print \"Change in entropy %.1f kJ/K\"%S21\n", "print \"Change in enthalpy\",H21,\"kJ\"\n", "\n", "# rounding off error would be there." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molecular weight and the gas constant of the gas are 18.03 kJ/Kg mol and 0.461 kJ/Kg K\n", "Work done 0 kJ\n", "The heat transferred 286.33 kJ\n", "The change in internal energy 286.33 kJ\n", "Change in entropy 0.9 kJ/K\n", "Change in enthalpy 373.92 kJ\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.9 Page No : 362" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from scipy.integrate import quad \n", "\n", "# Variables\n", "m = 1.5;\n", "P1 = 5.6; \n", "V1 = 0.06;\n", "T2 = 273.+240;\n", "a = 0.946; b = 0.662;\n", "k = 0.0001;\n", "\n", "# Calculation\n", "# Part (b)\n", "R = a-b;\n", "T1 = (P1*1e03*V1)/(m*R);\n", "def f8(T): \n", "\t return m*(b+k*T)\n", "\n", "W12 = - quad(f8,T1,T2)[0]\n", "\n", "# Results\n", "print \"The work done in the expansion is %.0f kJ\"%W12\n", "\n", "# note : answer is different becaues of quad function." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The work done in the expansion is 301 kJ\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.11 Page No : 363" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "m = 0.5;\n", "P1 = 80e03; \n", "T1 = 273.+60;\n", "P2 = 0.4e06;\n", "R = 0.287;\n", "V1 = (m*R*T1)/P1 ;\n", "g = 1.4; \t\t\t# Gamma\n", "\n", "# Calculation\n", "T2 = T1*(P2/P1)**((g-1)/g);\n", "W12 = (m*R*(T1-T2))/(g-1);\n", "V2 = V1*((P1/P2)**(1./g));\n", "W23 = P2*(V1-V2);\n", "W = W12+W23;\n", "V3 = V1;\n", "T3 = T2*(V3/V2);\n", "cp = 1.005;\n", "Q = m*cp*(T3-T2);\n", "\n", "# Results\n", "print \"The work transfer for the whole path is %.1f kJ\"%W\n", "print \"The heat transfer for the whole path %.2f kJ\"%Q\n", "\n", "# note : incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The work transfer for the whole path is 93.5 kJ\n", "The heat transfer for the whole path 571.64 kJ\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.12 Page No : 365" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "P1 = 700e03\n", "T1 = 273.+260; \n", "T3 = T1;\n", "V1 = 0.028; \n", "V2 = 0.084;\n", "R = 0.287;\n", "\n", "# Calculation\n", "m = (P1*V1)/(R*T1);\n", "P2 = P1;\n", "T2 = T1*((P2*V2)/(P1*V1));\n", "n = 1.5;\n", "P3 = P2*((T3/T2)**(n/(n-1)));\n", "cp = 1.005; cv = 0.718;\n", "Q12 = m*cp*(T2-T1);\n", "Q23 = m*cv*(T3-T2) + (m*R*(T2-T3))/(n-1);\n", "Q31 = m*R*T1*math.log(P3/P1);\n", "Q1 = Q12;\n", "Q2 = -(Q23+Q31);\n", "e = 1-(Q2/Q1);\n", "\n", "# Results\n", "print \"The heat received in the cycle is\",round(Q1/1000,2),\"kJ\"\n", "print \"The heat rejected in the cycle\",round(Q2/1000,2),\"J\"\n", "print \"The efficiency of the cycle is %.2f\"%e\n", "\n", "# note : rounding error is there." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat received in the cycle is 137.27 kJ\n", "The heat rejected in the cycle 84.27 J\n", "The efficiency of the cycle is 0.39\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.13 Page No : 366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "P1 = 300e03; \n", "V1 = 0.07;\n", "m = 0.25; \n", "T1 = 80+273;\n", "\n", "# Calculation\n", "R = (P1*V1)/(1000*m*T1);\n", "P2 = P1;\n", "V2 = 0.1;\n", "T2 = (P2*V2)/(1000*m*R);\n", "W = -25;\n", "cv = -W/(m*(T2-T1));\n", "cp = R+cv;\n", "S21 = m*cp*math.log(V2/V1); \t\t\t# S21 = S2-S1\n", "\n", "# Results\n", "print \"cv of the gas is %.3f kJ/Kg K\"%cv\n", "print \"cp of the gas is %.3f kJ/Kg K\"%cp\n", "print \"Increase in the entropy of the gas is %.2f kJ/Kg K\"%S21\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cv of the gas is 0.661 kJ/Kg K\n", "cp of the gas is 0.899 kJ/Kg K\n", "Increase in the entropy of the gas is 0.08 kJ/Kg K\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.14 Page No : 367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "P1 = 1.;\n", "P2 = 15.;\n", "V1 = 800e-06;\n", "V2 = V1/8;\n", "cv = 0.718; \n", "g = 1.4;\n", "\n", "# Calculation\n", "n = (math.log(P2/P1))/(math.log(V1/V2))\n", "T1 = 348; R = 0.287;\n", "m = (P1*100*V1)/(R*T1);\n", "T2 = T1*((P2*V2)/(P1*V1));\n", "P3 = 50;\n", "T3 = T2*(P3/P2);\n", "S21 = m*(cv*math.log(T2/T1)+R*math.log(V2/V1));\n", "S32 = m*cv*math.log(T3/T2);\n", "Q = (m*cv*(g-n)*(T2-T1))/(1-n);\n", "\n", "# Results\n", "print \"The index of compression process is %.1f\"%n\n", "print \"T2 = %.1f K\"%T2\n", "print \"S2-S1 is %.6f kJ/K\"%S21\n", "print \"S3-S2 is %.6f kJ/k\"%S32\n", "print \"The heat exchange is %.3f kJ\"%Q\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The index of compression process is 1.3\n", "T2 = 652.5 K\n", "S2-S1 is -0.000117 kJ/K\n", "S3-S2 is 0.000692 kJ/k\n", "The heat exchange is -0.057 kJ\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.15 Page No : 368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "mn = 3.; \t\t\t# Mass of nitrogen in kg\n", "mc = 5.; \t\t\t# mass of CO2 in kg\n", "an = 28.; \t\t\t# Atomic weight of nitrogen\n", "ac = 44.; \t\t\t# Atomic weight of CO2\n", "\n", "# Calculation and Results\n", "# Part (a)\n", "xn = (mn/an)/((mn/an)+(mc/ac)); \n", "xc = (mc/ac)/((mn/an)+(mc/ac)); \n", "print \"Mole fraction of N2 is %.3f\"%xn\n", "print \"Mole fraction of CO2 is %.3f\"%xc\n", "\n", "# Part (b)\n", "M = xn*an+xc*ac;\n", "print \"Equivalant molecular weight of mixture is %.2f Kg\"%M\n", "\n", "# Part (c)\n", "R = 8.314;\n", "Req = ((mn*R/an)+(mc*R/ac))/(mn+mc);\n", "print \"The equivalent gas consmath.tant of the mixture is %.3f kJ/Kg K\"%Req\n", "\n", "# Part (d)\n", "P = 300.; \t\t\t# Pressure in kPa\n", "T = 20.+273;\n", "Pn = xn*P; \t\t\t# Partial pressure of Nitrogen\n", "Pc = xc*P; \t\t\t# Partial pressure of CO2 \n", "Vn = (mn*R*T)/(P*an); \t\t\t# Volume of nitrogen\n", "Vc = (mc*R*T)/(P*ac); \t\t\t# Volume of CO2\n", "print \"Partial pressures of nitrogen and CO2 are %.1f and %.1f kPa respectively\"%(Pn,Pc)\n", "print \"Partial volume of nitrogen and CO2 are %.2f and %.2f m3 respectively\"%(Vn,Vc)\n", "\n", "# Part (e)\n", "V = (mn+mc)*Req*T/P; \t\t\t# Total volume\n", "rho = (mn+mc)/V;\n", "print \"Volume of mixture is %.2f m3\"%V\n", "print \"Density of mixture is %.2f Kg/m3\"%rho\n", "\n", "# Part (f)\n", "gn = 1.4; \t\t\t# Gamma\n", "gc = 1.286;\n", "cvn = R/((gn-1)*an); \t\t\t# cp and cv of N2\n", "cpn = gn*cvn; \n", "cvc = R/((gc-1)*ac); \t\t\t# cp and cv of CO2\n", "cpc = gc*cvc;\n", "cp = (mn*cpn+mc*cpc)/(mn+mc) ; \t\t\t# of mixture\n", "cv = (mn*cvn+mc*cvc)/(mn+mc) ;\n", "print \"cp and cv of mixture are %.2f and %.2f kJ/Kg K respectively\"%(cp,cv)\n", "\n", "T1 = T; \n", "T2 = 40.+273;\n", "U21 = (mn+mc)*cv*(T2-T1);\n", "H21 = (mn+mc)*cp*(T2-T1);\n", "S21v = (mn+mc)*cv*math.log(T2/T1); \t\t\t# If heated at constant volume\n", "\n", "print \"Change in internal energy of the system heated at constant volume is %.1f kJ\"%U21\n", "print \"Change in enthalpy of the system heated at constant volume is %.1f kJ\"%H21\n", "print \"Change in entropy of the system heated at constant volume is %.3f kJ/Kg K\"%S21v\n", "S21p = (mn+mc)*cp*math.log(T2/T1); \t\t\t# If heated at constant Pressure\n", "print \"Change in entropy of the system heated at constant Pressure is %.2f kJ\"%S21p\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mole fraction of N2 is 0.485\n", "Mole fraction of CO2 is 0.515\n", "Equivalant molecular weight of mixture is 36.24 Kg\n", "The equivalent gas consmath.tant of the mixture is 0.229 kJ/Kg K\n", "Partial pressures of nitrogen and CO2 are 145.6 and 154.4 kPa respectively\n", "Partial volume of nitrogen and CO2 are 0.87 and 0.92 m3 respectively\n", "Volume of mixture is 1.79 m3\n", "Density of mixture is 4.46 Kg/m3\n", "cp and cv of mixture are 0.92 and 0.69 kJ/Kg K respectively\n", "Change in internal energy of the system heated at constant volume is 110.6 kJ\n", "Change in enthalpy of the system heated at constant volume is 147.3 kJ\n", "Change in entropy of the system heated at constant volume is 0.365 kJ/Kg K\n", "Change in entropy of the system heated at constant Pressure is 0.49 kJ\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.16 Page No : 370" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "mo = 2.;\n", "mn = 6.;\n", "muo = 32.; \n", "mun = 28.;\n", "\n", "# Calculation\n", "o = mo/muo;\n", "n = mn/mun;\n", "xo = o/(n+o);\n", "xn = n/(n+o);\n", "R = 8.314;\n", "Ro = R/muo; Rn = R/mun;\n", "dS = -mo*Ro*math.log(xo)-mn*Rn*math.log(xn);\n", "\n", "# Results\n", "print \"Increase in entropy is %.4f kJ/Kg K\"%dS\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Increase in entropy is 1.2292 kJ/Kg K\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.17 Page No : 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "an = 20.183; \t\t\t# molecular weight of neon\n", "Pc = 2.73; \t\t\t# Critical pressure\n", "Tc = 44.5;\n", "Vc = 0.0416;\n", "Pr = 2; \t\t\t# Reduced Pressure\n", "Tr = 1.3; \n", "Z = 0.7;\n", "\n", "# Calculation\n", "P = Pr*Pc; \n", "T = Tr*Tc;\n", "R = 8.314;\n", "v = (Z*R*T)/(P*1000*an);\n", "vr = (v*an)/Vc ;\n", "\n", "# Results\n", "print \"Specific volume is %.3e m3/Kg\"%v\n", "print \"Specific temperature is\",T,\"K\"\n", "print \"Specific pressure is\",P,\"MPa\"\n", "print \"Reduced volume is %.2f\"%vr\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Specific volume is 3.055e-03 m3/Kg\n", "Specific temperature is 57.85 K\n", "Specific pressure is 5.46 MPa\n", "Reduced volume is 1.48\n" ] } ], "prompt_number": 31 } ], "metadata": {} } ] }