{ "metadata": { "name": "", "signature": "sha256:c3dcf79a03b4887493b03eb7567c9289353e41ba9f42b1e11e4742e5d995690d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "11: Laser" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.1, Page number 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda=590*10**-9; #wavelength of sodium D line(m)\n", "h=6.626*10**-34; #planck's constant\n", "c=3*10**8; #velocity of light(m/s)\n", "e=1.602*10**-19; #charge of electron(eV)\n", "\n", "#Calculation\n", "E=h*c/lamda; #energy of 1st excited state(J)\n", "E=E/e; #energy of 1st excited state(eV)\n", "\n", "#Result\n", "print \"energy of 1st excited state is\",round(E,1),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy of 1st excited state is 2.1 eV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.2, Page number 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T=250+273; #temperature(K)\n", "lamda=590*10**-9; #wavelength of sodium D line(m)\n", "h=6.626*10**-34; #planck's constant\n", "c=3*10**8; #velocity of light(m/s)\n", "k=1.38*10**-23; #boltzmann constant\n", "\n", "#Calculation\n", "a=h*c/(k*T*lamda);\n", "N2byN1=math.exp(-a); #ratio between atoms in 1st excited state and ground state\n", "\n", "#Result\n", "print \"ratio between atoms in 1st excited state and ground state is\",round(N2byN1*10**21,2),\"*10**-21\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio between atoms in 1st excited state and ground state is 5.33 *10**-21\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.3, Page number 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T=250+273; #temperature(K)\n", "lamda=590*10**-9; #wavelength of sodium D line(m)\n", "h=6.626*10**-34; #planck's constant\n", "c=3*10**8; #velocity of light(m/s)\n", "k=1.38*10**-23; #boltzmann constant\n", "\n", "#Calculation\n", "a=h*c/(k*T*lamda);\n", "N2byN1=1/(math.exp(a)-1); #ratio between stimulated emission and spontaneous emission\n", "\n", "#Result\n", "print \"ratio between stimulated emission and spontaneous emission is\",round(N2byN1*10**21,4),\"*10**-21\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio between stimulated emission and spontaneous emission is 5.3298 *10**-21\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.4, Page number 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n0=1.76; #refractive index of ruby rod\n", "new0=4.3*10**14; #frequency(Hz)\n", "deltav0=1.5*10**11; #doppler broadening(Hz)\n", "c=3*10**8; #velocity of light(m/s)\n", "tow21=4.3*10**-3; #lifetime of spontaneous emission(s)\n", "tow_photon=6*10**-9; #lifetime of photon(s)\n", "\n", "#Calculation\n", "a=4*math.pi**2*new0**2*n0**3/(c**3);\n", "N2_N1=a*tow21*deltav0/tow_photon; #difference between excited state and ground state population(per m**3)\n", "\n", "#Result\n", "print \"difference between excited state and ground state population is\",round(N2_N1*10**-23,3),\"*10**23 per m**3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "difference between excited state and ground state population is 1.584 *10**23 per m**3\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.5, Page number 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T=300; #temperature(K)\n", "lamda=5000*10**-10; #wavelength of light(m)\n", "h=6.626*10**-34; #planck's constant\n", "c=3*10**8; #velocity of light(m/s)\n", "k=1.38*10**-23; #boltzmann constant\n", "\n", "#Calculation\n", "a=h*c/(k*T*lamda);\n", "N2byN1=1/(math.exp(a)-1); #ratio between stimulated emission and spontaneous emission\n", "\n", "#Result\n", "print \"ratio between stimulated emission and spontaneous emission is\",round(N2byN1*10**42),\"*10**-42\"\n", "print \"answer varies due to rounding off errors\"\n", "print \"spontaneous emission is more predominant than that of stimulated emission. for stimulating emission, N2>>N1. therefore there is no amplification possibility\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio between stimulated emission and spontaneous emission is 2.0 *10**-42\n", "answer varies due to rounding off errors\n", "spontaneous emission is more predominant than that of stimulated emission. for stimulating emission, N2>>N1. therefore there is no amplification possibility\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.6, Page number 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda=632.8*10**-9; #wavelength of laser beam(m)\n", "h=6.626*10**-34; #planck's constant\n", "c=3*10**8; #velocity of light(m/s)\n", "P=2.3*10**-3; #output power(W)\n", "\n", "#Calculation\n", "new=c/lamda; #frequency of photon(Hz)\n", "E=h*new; #energy of photon(J)\n", "El=P*60; #energy emitted by laser(J/min)\n", "n=El/E; #number of photons emitted(photons/min)\n", "\n", "#Result\n", "print \"number of photons emitted is\",round(n*10**-17,3),\"*10**17 photons/min\"\n", "print \"answer varies due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of photons emitted is 4.393 *10**17 photons/min\n", "answer varies due to rounding off errors\n" ] } ], "prompt_number": 22 } ], "metadata": {} } ] }