{ "metadata": { "name": "", "signature": "sha256:e5ea4ff1709764161940877bdcbbb6d4676a6eced70f445ea6f3a31c76d16a31" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "8: X-rays" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.1, Page number 197" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=4.255; #atomic spacing(angstrom)\n", "lamda=1.549; #wavelength of K-copper line(angstrom) \n", "n=1; #theta is smallest when n=1\n", "\n", "\n", "#Calculation\n", "theta=math.asin(lamda/(2*d)); #glancing angle(radian)\n", "theta=theta*(180/math.pi); #glancing angle(degrees)\n", "#max value of sin(theta)=1 for highest order\n", "nmax=((2*d)/lamda); #highest bragg's order\n", "\n", "\n", "#Result\n", "print \"smallest glancing angle is\",round(theta,4),\"degrees\"\n", "print \"maximum order of reflection is\",round(nmax,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "smallest glancing angle is 10.4875 degrees\n", "maximum order of reflection is 5.494\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.2, Page number 197" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=60*10**3; #potential difference(volts)\n", "c=3*10**8; #velocity of light(m/sec)\n", "e=1.6*10**-19; #electron charge(coulomb)\n", "lamda=0.194*10**-10; #minimum wavelength of x-rays(m)\n", "\n", "#Calculation\n", "h=(lamda*e*V)/c; #planck's constant(Jsec)\n", "\n", "#Result\n", "print \"planck's constant is\",h,\"Jsec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "planck's constant is 6.208e-34 Jsec\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.3, Page number 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "#for 110 plane\n", "h=1;\n", "k=1;\n", "l=0;\n", "a=3; #lattice parameter(angstrom)\n", "n=1;\n", "theta=12.5; #glancing angle(degrees)\n", "\n", "#Calculation\n", "theta1=theta*(math.pi/180); #glancing angle(radian)\n", "d110=(a/math.sqrt((h**2)+(k**2)+(l**2))); \n", "lamda=2*d110*math.sin(theta1)/n; #wavelength of x-ray(angstrom)\n", "nmax=((2*d110)/lamda); #highest order possible\n", "\n", "#Result\n", "print \"wavelength of x-ray beam is\",round(lamda,3),\"angstrom\"\n", "print \"highest bragg's order possible is\",int(nmax)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of x-ray beam is 0.918 angstrom\n", "highest bragg's order possible is 4\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.4, Page number 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=2.81*10**-10; #interplanar spacing(m)\n", "theta=14; #glancing angle(degrees) \n", "e=1.6*10**-19; #electron charge(c)\n", "V=9100; #voltage(V)\n", "n=1;\n", "c=3*10**8; #velocity of light(m/sec)\n", "\n", "#Calculation\n", "theta=theta*(math.pi/180); #glancing angle(radian)\n", "lamda=2*d*math.sin(theta)/n; #minimum wavelength\n", "h=(lamda*e*V)/c; #planck's constant(Jsec)\n", "\n", "#Result\n", "print \"planck's constant is\",round(h*10**34,4),\"*10**-34 Jsec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "planck's constant is 6.5986 *10**-34 Jsec\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.5, Page number 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "thetaA=30; #glancing angle for line A(degrees)\n", "lamdaB=0.97; #wavelength of line B(angstrom)\n", "thetaB=60; #glancing angle for line B(degrees)\n", "\n", "#Calculation\n", "#for line A-> 2*d*sin(thetaA)=lamdaA(n=1)\n", "thetaA=thetaA*(math.pi/180); #glancing angle for line A(radian)\n", "#for line B-> 2*d*sin(thetaB)=3*lamdaB(n=3)\n", "thetaB=thetaB*(math.pi/180); #glancing angle for line B(radian) \n", "d=(3*lamdaB)/(2*math.sin(thetaB)); #interplanar spacing(angstrom)\n", "lamdaA=2*d*math.sin(thetaA); #wavelength of line A(angstrom)\n", "\n", "#Result\n", "print \"wavelength of line A is\",round(lamdaA,2),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of line A is 1.68 angstrom\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.6, Page number 199" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=3.615; #lattice constant(angstrom)\n", "h=1;\n", "k=1;\n", "l=1;\n", "theta=21.7; #glancing angle(degrees)\n", "\n", "#Calculation\n", "d111=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(angstrom)\n", "theta=theta*(math.pi/180); #glancing angle(radian)\n", "lamda=2*d111*math.sin(theta); #wavelength of X-rays(angstrom)\n", "\n", "#Result\n", "print \"wavelength of X-rays is\",round(lamda,3),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of X-rays is 1.543 angstrom\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.7, Page number 199" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=50*10**3; #voltage(V)\n", "n=4; #FCC crystal\n", "m=74.6; #molecular mass(kg)\n", "N=6.02*10**26; #avagadro number(per kg mol)\n", "rho=1.99*10**3; #density(kg/m**3) \n", "\n", "#Calculation\n", "lamda=(12400/V); #short wavelength(angstrom)\n", "a=(((n*m)/(N*rho))**(1/3)); #lattice constant(m)\n", "#for kcl ionic crystal\n", "d=a/2;\n", "sintheta=lamda*10**-10/(2*d); #value of sintheta\n", "theta=math.asin(sintheta); #glancing angle(radian)\n", "theta=theta*(180/math.pi); #glancing angle(degrees)\n", "\n", "#Result\n", "print \"short wavelength of spectrum from tube is\",lamda,\"angstrom\"\n", "print \"glancing angle for that wavelength is\",round(theta,4),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "short wavelength of spectrum from tube is 0.248 angstrom\n", "glancing angle for that wavelength is 2.2589 degrees\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.8, Page number 199" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "theta1=5.4; #glancing angle(degrees)\n", "theta2=7.6; #glancing angle(degrees)\n", "theta3=9.4; #glancing angle(degrees) \n", "\n", "#Calculation\n", "#from bragg's law 2*d*sin(theta)=n*lamda, n=1\n", "theta1=theta1*(math.pi/180); #glancing angle(radian)\n", "theta2=theta2*(math.pi/180); #glancing angle(radian)\n", "theta3=theta3*(math.pi/180); #glancing angle(radian)\n", "d100=lamda/2*math.sin(theta1); #interplanar spacing\n", "d110=lamda/2*math.sin(theta2); #interplanar spacing\n", "d111=lamda/2*math.sin(theta3); #interplanar spacing\n", "\n", "#Result\n", "print \"ratio of interplanar spacing (1/d100):(1/d110):(1/d111)=\",round(math.sin(theta1),4),\":\",round(math.sin(theta2),4),\":\",round(math.sin(theta3),4)\n", "print \"as ratio (1/d100):(1/d110):(1/d111)=1:sqrt(2):sqrt(3). this relation is valid for simple cubic systems. therefore, this is a simple cubic crystal\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio of interplanar spacing (1/d100):(1/d110):(1/d111)= 0.0941 : 0.1323 : 0.1633\n", "as ratio (1/d100):(1/d110):(1/d111)=1:sqrt(2):sqrt(3). this relation is valid for simple cubic systems. therefore, this is a simple cubic crystal\n" ] } ], "prompt_number": 34 } ], "metadata": {} } ] }