{ "metadata": { "name": "", "signature": "sha256:e2b842be083bc61cf1d1d9ada89de2502dedfb3d340e5f3b6d0b51d6c790688a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "4: Ultrasonic" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.1, Page number 84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V1=343; #velocity of air(m/s)\n", "V2=1372; #velocity f water(m/s)\n", "dt=3; #time difference(s)\n", "\n", "\n", "#Calculation\n", "S=((V1*V2)*(dt))/(V2-V1); #distance between two ships(m)\n", "\n", "#Result\n", "print \"distance between two ships is\",S,\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "distance between two ships is 1372.0 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.2, Page number 84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=1700; #velocity of sound(m/s)\n", "t=0.65; #time(s)\n", "n=0.07*10**6; #frequency of source(Hz)\n", "\n", "\n", "#Calculation\n", "d=(V*t)/2; #depth of sea(m)\n", "lamda=V/n; #wavelength of pulse(m)\n", "\n", "#Result\n", "print \"depth of sea is\",d,\"m\"\n", "print \"wavelength of pulse is\",round(lamda,4),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of sea is 552.5 m\n", "wavelength of pulse is 0.0243 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.3, Page number 84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "P=1; \n", "l=40*10**-3; #length of pure rod(m)\n", "E=115*10**9; #Young's modulus(N/m**2)\n", "D=7.25*10**3; #density of pure iron(kg/m**3)\n", "\n", "#Calculation\n", "n=(P/(2*l))*math.sqrt(E/D); #natural frequency of pure rod(Hz) \n", "\n", "#Result\n", "print \"natural frequency of pure rod is\",round(n/10**3,1),\"kHz\"\n", "print \"answer given in the book is wrong\"\n", "print \"frequency of rod is more than audible range, rod can be used in magnetostriction oscillator\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "natural frequency of pure rod is 49.8 kHz\n", "answer given in the book is wrong\n", "frequency of rod is more than audible range, rod can be used in magnetostriction oscillator\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }