{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#8: Semiconductors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.1, Page number 8.55" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity is 0.41667 ohm m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=2.5*10**19; #intrinsic concentration(per m**3)\n", "mewn=0.4; #mobility of electrons(m**2/Vs)\n", "mewp=0.2; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "\n", "#Calculation\n", "sigma_i=ni*e*(mewn+mewp);\n", "rhoi=1/sigma_i; #resistivity(ohm m)\n", "\n", "#Result\n", "print \"resistivity is\",round(rhoi,5),\"ohm m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.2, Page number 8.56" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of donor atoms is 8.333 *10**19 per m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewn=0.3; #mobility of electrons(m**2/Vs)\n", "rho=0.25; #resistivity(ohm m)\n", "e=1.6*10**-19;\n", "\n", "#Calculation\n", "n=1/(rho*e*mewn); #number of donor atoms(per m**3)\n", "\n", "#Result\n", "print \"number of donor atoms is\",round(n/10**19,3),\"*10**19 per m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.3, Page number 8.56" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "diffusion coefficient of electrons is 54.34 *10**-4 m**2/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewn=0.21; #mobility of electrons(m**2/Vs)\n", "e=1.6*10**-19;\n", "Kb=1.38*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "\n", "#Calculation\n", "Dn=mewn*Kb*T/e; #diffusion coefficient of electrons(m**2/s)\n", "\n", "#Result\n", "print \"diffusion coefficient of electrons is\",round(Dn*10**4,2),\"*10**-4 m**2/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.4, Page number 8.56" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "carrier concentration is 19.4 *10**21 per m**3\n", "#mobility of holes is 0.03788 m**2/Vs\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Rh=3.22*10**-4; #hall coefficient(m**3/C)\n", "e=1.6*10**-19;\n", "rho=8.5*10**-3; #resistivity(ohm m)\n", "\n", "#Calculation\n", "p=1/(Rh*e); #carrier concentration(per m**3)\n", "mewp=Rh/rho; #mobility of holes(m**2/Vs)\n", "\n", "#Result\n", "print \"carrier concentration is\",round(p/10**21,1),\"*10**21 per m**3\"\n", "print \"#mobility of holes is\",round(mewp,5),\"m**2/Vs\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.5, Page number 8.57" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intrinsic concentration is 556.25 *10**16 per m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewe=0.36; #mobility of electrons(m**2/Vs)\n", "mewh=0.17; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "rhoi=2.12; #resistivity(ohm m)\n", "\n", "#Calculation\n", "ni=1/(rhoi*e*(mewe+mewh)); #intrinsic concentration(per m**3)\n", "\n", "#Result\n", "print \"intrinsic concentration is\",round(ni/10**16,2),\"*10**16 per m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.6, Page number 8.57" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity is 0.449 ohm m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewe=0.39; #mobility of electrons(m**2/Vs)\n", "mewh=0.19; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "ni=2.4*10**19; #intrinsic concentration(per m**3) \n", "\n", "#Calculation\n", "rhoi=1/(ni*e*(mewe+mewh)); #resistivity(ohm m) \n", "\n", "#Result\n", "print \"resistivity is\",round(rhoi,3),\"ohm m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.7, Page number 8.57" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "conductivity is 0.439 *10**-3 per ohm m\n", "hole concentration is 2.25 *10**9 per m**3\n", "conductivity is 2.16 *10**3 per ohm m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewe=0.135; #mobility of electrons(m**2/Vs)\n", "mewh=0.048; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "ni=1.5*10**16; #intrinsic concentration(per m**3)\n", "Nd=10**23; #doping concentration(per m**3)\n", "\n", "#Calculation\n", "sigma=ni*e*(mewe+mewh); #conductivity(per ohm m) \n", "p=ni**2/Nd; #hole concentration(per m**3)\n", "sigman=Nd*e*mewe; #conductivity(per ohm m) \n", "\n", "#Result\n", "print \"conductivity is\",round(sigma*10**3,3),\"*10**-3 per ohm m\"\n", "print \"hole concentration is\",p/10**9,\"*10**9 per m**3\"\n", "print \"conductivity is\",sigman/10**3,\"*10**3 per ohm m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.8, Page number 8.58" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "carrier concentration is 1.7 *10**22 per m**3\n", "#mobility of holes is 4.099 *10**-2 m**2/Vs\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Rh=3.66*10**-4; #hall coefficient(m**3/C)\n", "e=1.6*10**-19;\n", "rhoh=8.93*10**-3; #resistivity(ohm m)\n", "\n", "#Calculation\n", "p=1/(Rh*e); #carrier concentration(per m**3)\n", "mewp=Rh/rhoh; #mobility of holes(m**2/Vs)\n", "\n", "#Result\n", "print \"carrier concentration is\",round(p/10**22,1),\"*10**22 per m**3\"\n", "print \"#mobility of holes is\",round(mewp*10**2,3),\"*10**-2 m**2/Vs\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.9, Page number 8.58" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "conductivity is 4.32 *10**-4 per ohm m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewe=0.13; #mobility of electrons(m**2/Vs)\n", "mewh=0.05; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "ni=1.5*10**16; #intrinsic concentration(per m**3)\n", "\n", "#Calculation\n", "sigma=ni*e*(mewe+mewh); #conductivity(per ohm m) \n", "\n", "#Result\n", "print \"conductivity is\",sigma*10**4,\"*10**-4 per ohm m\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.10, Page number 8.58" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "conductivity is 11.2 per ohm m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewe=0.14; #mobility of electrons(m**2/Vs)\n", "mewh=0.05; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "ni=1.5*10**16; #intrinsic concentration(per m**3)\n", "A=28.09; #atomic weight\n", "D=2.33*10**3; #density(kg/m**3)\n", "Na=6.025*10**26; #avagadro number\n", "\n", "#Calculation\n", "N=Na*D/A; #number of atoms(per m**3)\n", "n=N/10**8; #electron concentration(per m**3)\n", "p=ni**2/n; #hole concentration(per m**3)\n", "sigma=e*((n*mewe)+(p*mewh)); #conductivity(per ohm m) \n", "\n", "#Result\n", "print \"conductivity is\",round(sigma,1),\"per ohm m\" " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.11, Page number 8.59" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity is 4.13 *10**-4 per ohm m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewe=0.36; #mobility of electrons(m**2/Vs)\n", "mewh=0.18; #mobility of holes(m**2/Vs)\n", "e=1.6*10**-19;\n", "ni=2.5*10**19; #intrinsic concentration(per m**3)\n", "N=4.2*10**28; #avagadro number\n", "\n", "#Calculation\n", "n=N/10**6; #electron concentration(per m**3)\n", "p=ni**2/n; #hole concentration(per m**3)\n", "rhoi=1/(e*((n*mewe)+(p*mewh))); #resistivity(per ohm m) \n", "\n", "#Result\n", "print \"resistivity is\",round(rhoi*10**4,2),\"*10**-4 per ohm m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.12, Page number 8.60" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hole concentration is 1.2 *10**9 per m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "np=2.4*10**9; #carrier concentration(per m**3)\n", "N=4.2*10**28; #avagadro number\n", "\n", "#Calculation\n", "p=np/2; #hole concentration(per m**3)\n", "\n", "#Result\n", "print \"hole concentration is\",p/10**9,\"*10**9 per m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.13, Page number 8.60" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density of donor atoms is 8.92 *10**19 electrons/m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mewn=0.35; #mobility of electrons(m**2/Vs)\n", "e=1.602*10**-19;\n", "rho=0.2; #resistivity(ohm m)\n", "\n", "#Calculation\n", "n=1/(rho*e*mewn); #density of donor atoms\n", "\n", "#Result\n", "print \"density of donor atoms is\",round(n/10**19,2),\"*10**19 electrons/m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.14, Page number 8.60" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy gap is 0.573 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Kb=1.38*10**-23; #boltzmann constant\n", "T1=300; #temperature(K)\n", "T2=320; #temperature(K)\n", "rho1=5; #resistivity(ohm m)\n", "rho2=2.5; #resistivity(ohm m)\n", "\n", "#Calculation\n", "Eg=2*Kb*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n", "\n", "#Result\n", "print \"energy gap is\",round(Eg/e,3),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.15, Page number 8.61" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "diffusion coefficient is 4.92 *10**-3 m**2/sec\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Kb=1.38*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "mewe=0.19; #mobility of electrons(m**2/Vs)\n", "e=1.6*10**-19;\n", "\n", "#Calculation\n", "Dn=mewe*Kb*T/e; #diffusion coefficient(m**2/sec)\n", "\n", "#Result\n", "print \"diffusion coefficient is\",round(Dn*10**3,2),\"*10**-3 m**2/sec\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.16, Page number 8.61" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy gap is 1.04 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Kb=1.38*10**-23; #boltzmann constant\n", "T1=293; #temperature(K)\n", "T2=305; #temperature(K)\n", "rho1=4.5; #resistivity(ohm m)\n", "rho2=2.0; #resistivity(ohm m)\n", "\n", "#Calculation\n", "Eg=2*Kb*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n", "\n", "#Result\n", "print \"energy gap is\",round(Eg/e,2),\"eV\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }