{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 2: Crystal Structure " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.1, Page number 27" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "volume density is 1249.04 kg/m**3\n", "answer in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "M=28; #atomic weight of Si\n", "N=6.023*10**23; #avagadro number\n", "a=5.3*10**-10; #lattice constant(m)\n", "n=4;\n", "\n", "#Calculations\n", "V=a**3; #volume(m**3)\n", "m=M/(N*10**3); #mass(kg)\n", "rho=n*m/V; #volume density(kg/m**3)\n", "\n", "#Result\n", "print \"volume density is\",round(rho,2),\"kg/m**3\"\n", "print \"answer in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.2, Page number 27" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of atoms per unit cell is 2\n", "the lattice is BCC\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "M=55.85; #atomic weight\n", "N=6.023*10**23; #avagadro number\n", "a=2.9*10**-8; #lattice constant(m)\n", "rho=7.87; #volume density(gm/cc)\n", "\n", "#Calculations\n", "n=rho*N*a**3/M; #number of atoms per unit cell\n", "\n", "#Result\n", "print \"number of atoms per unit cell is\",int(n)\n", "print \"the lattice is BCC\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.3, Page number 28" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of unit cells is 5.019 *10**22\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "M=120; #atomic mass\n", "N=6.023*10**23; #avagadro number\n", "n=2;\n", "g=20; #mass(gm)\n", "\n", "#Calculations\n", "u=n*M/N; \n", "nu=g/u; #number of unit cells\n", "\n", "#Result\n", "print \"number of unit cells is\",round(nu/10**22,3),\"*10**22\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.4, Page number 33" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "miller indices are ( 2 1 0 )\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from fractions import gcd\n", "\n", "#Variable declaration\n", "a=1;\n", "b=2;\n", "c=float(\"inf\"); #intercepts\n", "\n", "#Calculation\n", "lcm=a*b/gcd(a,b);\n", "h=int(lcm/a);\n", "k=int(lcm/b);\n", "l=int(lcm/c); #miller indices\n", "\n", "#Result\n", "print \"miller indices are (\",h,k,l,\")\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.5, Page number 33" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "miller indices are ( 3 2 1 )\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from fractions import gcd\n", "\n", "#Variable declaration\n", "a=2;\n", "b=3;\n", "c=6; #intercepts\n", "\n", "#Calculation\n", "lcm_ab=a*b/gcd(a,b); #lcm of a and b\n", "lcm=lcm_ab*c/gcd(lcm_ab,c); #lcm of a,b and c\n", "h=int(lcm/a);\n", "k=int(lcm/b);\n", "l=int(lcm/c); #miller indices\n", "\n", "#Result\n", "print \"miller indices are (\",h,k,l,\")\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.6, Page number 33" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "miller indices are ( 3 4 0 )\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from fractions import gcd\n", "\n", "#Variable declaration\n", "a=4;\n", "b=3;\n", "c=float(\"inf\"); #intercepts\n", "\n", "#Calculation\n", "lcm=a*b/gcd(a,b);\n", "h=int(lcm/a);\n", "k=int(lcm/b);\n", "l=int(lcm/c); #miller indices\n", "\n", "#Result\n", "print \"miller indices are (\",h,k,l,\")\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.7, Page number 33" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of intercepts is 6 -2 3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from fractions import gcd\n", "\n", "#Variable declaration\n", "h=1;\n", "k=-3;\n", "l=2; #miller indices\n", "\n", "#Calculation\n", "lcm_hk=h*k/gcd(h,k); #lcm of h and k\n", "lcm=lcm_hk*l/gcd(lcm_hk,l); #lcm of h,k and l\n", "l1=int(lcm/h);\n", "l2=int(lcm/k);\n", "l3=int(lcm/l); #intercepts\n", "\n", "#Result\n", "print \"ratio of intercepts is\",l1,l2,l3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.8, Page number 34" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intercept on Y axis is 1.2 angstrom\n", "intercept on Z axis is 4.0 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "a=1.2;\n", "b=1.8;\n", "c=2.0; #crystal primitives\n", "x=2;\n", "y=3;\n", "z=1; #intercepts \n", "h=1.2; #intercept on X axis\n", "\n", "#Calculations\n", "h1=a/x;\n", "k1=b/y;\n", "l1=c/z;\n", "k=h*h1/k1; #intercept on Y axis\n", "l=h*l1/h1; #intercept on Z-axis\n", "\n", "#Result\n", "print \"intercept on Y axis is\",k,\"angstrom\"\n", "print \"intercept on Z axis is\",l,\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.9, Page number 39" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "interplanar spacing in 1st plane is 1.762 angstrom\n", "interplanar spacing in 2nd plane is 1.246 angstrom\n", "interplanar spacing in 3rd plane is 2.0347 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "r=1.246; #atomic radius(angstrom)\n", "h1=2; #intercept on X axis\n", "k1=0; #intercept on Y axis\n", "l1=0; #intercept on Z-axis\n", "h2=2; #intercept on X axis\n", "k2=2; #intercept on Y axis\n", "l2=0; #intercept on Z-axis\n", "h3=1; #intercept on X axis\n", "k3=1; #intercept on Y axis\n", "l3=1; #intercept on Z-axis\n", "\n", "#Calculations\n", "a=2*math.sqrt(2)*r; #lattice constant\n", "d1=a/math.sqrt(h1**2+k1**2+l1**2); #interplanar spacing in 1st plane(angstrom)\n", "d2=a/math.sqrt(h2**2+k2**2+l2**2); #interplanar spacing in 2nd plane(angstrom)\n", "d3=a/math.sqrt(h3**2+k3**2+l3**2); #interplanar spacing in 3rd plane(angstrom)\n", "\n", "#Result\n", "print \"interplanar spacing in 1st plane is\",round(d1,3),\"angstrom\"\n", "print \"interplanar spacing in 2nd plane is\",d2,\"angstrom\"\n", "print \"interplanar spacing in 3rd plane is\",round(d3,4),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.10, Page number 39" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "interplanar spacing in 1st plane is a/math.sqrt( 2 ) angstrom\n", "interplanar spacing in 2nd plane is a/math.sqrt( 2 ) angstrom\n", "interplanar spacing in 3rd plane is a/math.sqrt( 6 ) angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "h1=0; #intercept on X axis\n", "k1=1; #intercept on Y axis\n", "l1=1; #intercept on Z-axis\n", "h2=1; #intercept on X axis\n", "k2=0; #intercept on Y axis\n", "l2=1; #intercept on Z-axis\n", "h3=1; #intercept on X axis\n", "k3=1; #intercept on Y axis\n", "l3=2; #intercept on Z-axis\n", "\n", "#Calculations\n", "d1=h1**2+k1**2+l1**2; #interplanar spacing in 1st plane(angstrom)\n", "d2=h2**2+k2**2+l2**2; #interplanar spacing in 2nd plane(angstrom)\n", "d3=h3**2+k3**2+l3**2; #interplanar spacing in 3rd plane(angstrom)\n", "\n", "#Result\n", "print \"interplanar spacing in 1st plane is a/math.sqrt(\",d1,\") angstrom\"\n", "print \"interplanar spacing in 2nd plane is a/math.sqrt(\",d2,\") angstrom\"\n", "print \"interplanar spacing in 3rd plane is a/math.sqrt(\",d3,\") angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.11, Page number 40" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "interplanar spacing is 1.12 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "a=4.2; #lattice constant(angstrom)\n", "h=3; #intercept on X axis\n", "k=2; #intercept on Y axis\n", "l=1; #intercept on Z-axis\n", "\n", "#Calculations\n", "d=a/math.sqrt(h**2+k**2+l**2); #interplanar spacing(angstrom)\n", "\n", "#Result\n", "print \"interplanar spacing is\",round(d,2),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.12, Page number 40" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "miller indices in 1st case are ( 1 1 1 )\n", "miller indices in 2nd case are ( 3 2 1 )\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from fractions import gcd\n", "\n", "#Variable declaration\n", "a1=1;\n", "b1=1;\n", "c1=1; #intercepts in 1st case\n", "a2=2;\n", "b2=3;\n", "c2=6; #intercepts in 2nd case\n", "\n", "#Calculation\n", "lcm_a1b1=a1*b1/gcd(a1,b1); #lcm of a1 and b1\n", "lcm1=lcm_ab*c1/gcd(lcm_a1b1,c1); #lcm of a1,b1 and c1\n", "h1=int(lcm1/a1);\n", "k1=int(lcm1/b1);\n", "l1=int(lcm1/c1); #miller indices in 1st case\n", "lcm_a2b2=a2*b2/gcd(a2,b2); #lcm of a2 and b2\n", "lcm2=lcm_a2b2*c2/gcd(lcm_a2b2,c2); #lcm of a2,b2 and c2\n", "h2=int(lcm2/a2);\n", "k2=int(lcm2/b2);\n", "l2=int(lcm2/c2); #miller indices in 2nd case\n", "\n", "#Result\n", "print \"miller indices in 1st case are (\",h1,k1,l1,\")\"\n", "print \"miller indices in 2nd case are (\",h2,k2,l2,\")\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.14, Page number 47" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density of crystal is 8.929 gm/cm**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "M=63.5; #atomic weight(gm/mol)\n", "N=6.023*10**23; #avagadro number\n", "r=1.278*10**-8; #atomic radius(cm)\n", "n=4;\n", "\n", "#Calculations\n", "m=M/N; #mass(g)\n", "a=4*r/math.sqrt(2); #lattice constant(cm)\n", "V=a**3; #volume(m**3)\n", "rho=n*m/V; #density of crystal(g/cm**3)\n", "\n", "#Result\n", "print \"density of crystal is\",round(rho,3),\"gm/cm**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.15, Page number 47" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "minimum radius is 0.155 r\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "r=1; #assume\n", "\n", "#Calculations\n", "a=4*r/math.sqrt(3); #lattice constant\n", "R=(a-(2*r))/2; #minimum radius \n", "\n", "#Result\"\n", "print \"minimum radius is\",round(R,3),\"r\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.16, Page number 48" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum radius is 0.414 r\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "r=1; #assume\n", "\n", "#Calculations\n", "a=4*r/math.sqrt(2); #lattice constant\n", "R=(a/2)-r; #maximum radius \n", "\n", "#Result\"\n", "print \"maximum radius is\",round(R,3),\"r\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.17, Page number 48" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percent volume change is 0.5 %\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "r1=1.258*10**-10; #atomic radius(m)\n", "r2=1.292*10**-10; #atomic radius(m)\n", "n1=2;\n", "n2=4;\n", "\n", "#Calculations\n", "a1=4*r1/math.sqrt(3); #lattice constant(m)\n", "V1=a1**3/n1; #volume(m**3)\n", "a2=2*math.sqrt(2)*r2; #lattice constant(m)\n", "V2=a2**3/n2; #volume(m**3)\n", "V=(V1-V2)*100/V1; #percent volume change\n", "\n", "#Result\"\n", "print \"percent volume change is\",round(V,1),\"%\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.18, Page number 51" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of atoms is 1.77 *10**29\n", "density of diamond is 3535.7 kg/m**3\n", "answer in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "a=0.356*10**-9; #cube edge(m)\n", "M=12.01; #atomic weight\n", "N=6.023*10**26; #avagadro number\n", "\n", "#Calculations\n", "n=8/a**3; #number of atoms\n", "m=M/N; #mass(kg)\n", "rho=m*n; #density of diamond(kg/m**3)\n", "\n", "#Result\"\n", "print \"number of atoms is\",round(n/10**29,2),\"*10**29\"\n", "print \"density of diamond is\",round(rho,1),\"kg/m**3\"\n", "print \"answer in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.19, Page number 54 Theoritical" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.20, Page number 55" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "volume of unit cell is 9.356 *10**-29 m**3\n", "density of zinc is 6960 kg/m**3\n", "answer in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "a=0.27*10**-9; #lattice constant(m)\n", "c=0.494*10**-9; #height of cell(m)\n", "M=65.37; #atomic weight\n", "N=6.023*10**26; #avagadro number\n", "n=6; #number of atoms\n", "\n", "#Calculations\n", "V=3*math.sqrt(3)*a**2*c/2; #volume of unit cell(m**3)\n", "rho=n*M/(N*V); #density of zinc(kg/m**3)\n", "\n", "#Result\"\n", "print \"volume of unit cell is\",round(V*10**29,3),\"*10**-29 m**3\"\n", "print \"density of zinc is\",int(rho),\"kg/m**3\"\n", "print \"answer in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.21, Page number 57" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density of Si is 2.33 gm/cm**3\n", "density of GaAs is 5.324 gm/cm**3\n", "answer in the book varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "a1=5.43*10**-8; #lattice constant(cm)\n", "M1=28.1; #atomic weight\n", "N=6.023*10**23; #avagadro number\n", "n1=8; #number of atoms\n", "a2=5.65*10**-8; #lattice constant(cm)\n", "M2=144.6; #atomic weight\n", "n2=4; #number of atoms\n", "\n", "#Calculations\n", "rho1=n1*M1/(N*a1**3); #density of Si(gm/cm**3)\n", "rho2=n2*M2/(N*a2**3); #density of GaAs(gm/cm**3)\n", "\n", "#Result\"\n", "print \"density of Si is\",round(rho1,2),\"gm/cm**3\"\n", "print \"density of GaAs is\",round(rho2,3),\"gm/cm**3\"\n", "print \"answer in the book varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.22, Page number 58" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lattice constant is 4 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "rho=6250; #density(kg/m**3)\n", "M=60.2; #molecular weight\n", "N=6.02*10**26; #avagadro number\n", "n=4; #number of atoms\n", "\n", "#Calculations\n", "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n", "\n", "#Result\n", "print \"lattice constant is\",int(a*10**10),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.23, Page number 58" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density of copper is 8938 kg/m**3\n", "answer in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r=1.278*10**-8; #atomic radius(cm)\n", "M=63.54; #molecular weight\n", "N=6.02*10**23; #avagadro number\n", "n=4; #number of atoms\n", "\n", "#Calculations\n", "a=4*r/math.sqrt(2); #lattice constant(cm)\n", "rho=n*M*10**3/(N*a**3); #density(kg/m**3)\n", "\n", "#Result\n", "print \"density of copper is\",int(rho),\"kg/m**3\"\n", "print \"answer in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.24, Page number 58" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lattice constant is 2.867 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=7870; #density(kg/m**3)\n", "M=55.8; #molecular weight\n", "N=6.02*10**26; #avagadro number\n", "n=2; #number of atoms\n", "\n", "#Calculations\n", "a=(n*M/(rho*N))**(1/3); #lattice constant(m)\n", "\n", "#Result\n", "print \"lattice constant is\",round(a*10**10,3),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.25, Page number 59" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "radius of atom is 1.414 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=6.23; #density(gm/cc)\n", "M=60; #molecular weight\n", "N=6.023*10**23; #avagadro number\n", "n=4; #number of atoms\n", "\n", "#Calculations\n", "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n", "r=a*math.sqrt(2)*10**8/4; #radius of atom(angstrom)\n", "\n", "#Result\n", "print \"radius of atom is\",round(r,3),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.26, Page number 59" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "distance between ions is 3.8 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=2.48; #density(gm/cc)\n", "M=58; #molecular weight\n", "N=6.023*10**23; #avagadro number\n", "n=4; #number of atoms\n", "\n", "#Calculations\n", "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n", "r=a*math.sqrt(2)*10**8/4; #radius of atom(angstrom)\n", "d=2*r; #distance between ions(angstrom)\n", "\n", "#Result\n", "print \"distance between ions is\",round(d,1),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.27, Page number 59" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "distance between ions is 2.55 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=8.96; #density(gm/cc)\n", "M=63.5; #molecular weight\n", "N=6.02*10**23; #avagadro number\n", "n=4; #number of atoms\n", "\n", "#Calculations\n", "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n", "d=a/math.sqrt(2)*10**8; #distance between ions(angstrom)\n", "\n", "#Result\n", "print \"distance between ions is\",round(d,2),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.28, Page number 60" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "packing factor is 0.68\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=5.96; #density(gm/cc)\n", "M=50; #molecular weight\n", "N=6.023*10**23; #avagadro number\n", "n=2; #number of atoms\n", "\n", "#Calculations\n", "a=(n*M/(rho*N))**(1/3); #lattice constant(cm)\n", "r=a*math.sqrt(3)/4; #radius of atom(angstrom)\n", "pf=n*(4/3)*math.pi*r**3/a**3; #packing factor\n", "\n", "#Result\n", "print \"packing factor is\",round(pf,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.29, Page number 61" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "packing fraction is 68 %\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=1; #assume\n", "n=2; #number of atoms\n", "\n", "#Calculations\n", "r=a*math.sqrt(3)/4; #radius of atom\n", "V=4*math.pi*r**3/3; #volume\n", "f=n*V*100/a**3; #packing fraction\n", "\n", "#Result\n", "print \"packing fraction is\",int(f),\"%\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 2.30, Page number 61" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "lattice constant is 3.22 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Vd=3*10**22; #density(gm/cc)\n", "n=8*(1/8); #number of atoms\n", "\n", "#Calculations\n", "a=(n/Vd)**(1/3); #lattice constant(cm)\n", "\n", "#Result\n", "print \"lattice constant is\",round(a*10**8,2),\"angstrom\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }