{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 12: Lasers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.1, Page number 360" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy of photon is 1.96 eV\n", "momentum of photon is 1.05 *10**-27 kg m/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "c=3*10**8; #velocity of matter wave(m/s)\n", "h=6.62*10**-34; #plank's constant(Js)\n", "lamda=6328*10**-10; #wavelength(m)\n", "\n", "#Calculation\n", "E=h*c/(lamda*e); #energy of photon(eV)\n", "p=h/lamda; #momentum of photon(kg m/s)\n", "\n", "#Result\n", "print \"energy of photon is\",round(E,2),\"eV\"\n", "print \"momentum of photon is\",round(p*10**27,2),\"*10**-27 kg m/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.2, Page number 360" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy of laser pulse is 7.94 joule\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c=3*10**8; #velocity of matter wave(m/s)\n", "h=6.62*10**-34; #plank's constant(Js)\n", "lamda=7000*10**-10; #wavelength(m)\n", "n=2.8*10**19; #number of ions\n", "\n", "#Calculation\n", "E=n*h*c/lamda; #energy of laser pulse(joule)\n", "\n", "#Result\n", "print \"energy of laser pulse is\",round(E,2),\"joule\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.3, Page number 361" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of oscillations is 5 *10**4\n", "coherence time is 9.82 *10**-11 s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c=3*10**8; #velocity of matter wave(m/s)\n", "l=2.945*10**-2;\n", "lamda=5890*10**-10; #wavelength(m)\n", "\n", "#Calculation\n", "n=l/lamda; #number of oscillations\n", "tow_c=l/c; #coherence time(s)\n", "\n", "#Result\n", "print \"number of oscillations is\",int(n/10**4),\"*10**4\"\n", "print \"coherence time is\",round(tow_c*10**11,2),\"*10**-11 s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.4, Page number 361" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "intensity of beam is 7.5 kW/m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "P=10*10**-3; #power(W)\n", "d=1.3*10**-3; #diameter(m)\n", "\n", "#Calculation\n", "I=4*P/(math.pi*d**2); #intensity of beam(W/m**2)\n", "\n", "#Result\n", "print \"intensity of beam is\",round(I/10**3,1),\"kW/m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.5, Page number 361" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of ions is 3.49 *10**18\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c=3*10**8; #velocity of matter wave(m/s)\n", "h=6.62*10**-34; #plank's constant(Js)\n", "lamda=6940*10**-10; #wavelength(m)\n", "P=1; #power(J)\n", "\n", "#Calculation\n", "n=P*lamda/(h*c); #number of ions\n", "\n", "#Result\n", "print \"number of ions is\",round(n/10**18,2),\"*10**18\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.6, Page number 362" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "population ratio is e** -80\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c=3*10**8; #velocity of matter wave(m/s)\n", "h=6.62*10**-34; #plank's constant(Js)\n", "lamda=6*10**-7; #wavelength(m)\n", "e=1.6*10**-19; #charge(coulomb)\n", "k=8.6*10**-5;\n", "T=300; #temperature(K)\n", "\n", "#Calculation\n", "E=h*c/(lamda*e); #energy(eV)\n", "N=-E/(k*T); #population ratio\n", "\n", "#Result\n", "print \"population ratio is e**\",int(N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.7, Page number 362" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "coherence length is 11.36 km\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda=10.66*10**-6; #wavelength(m)\n", "delta_lamda=10**-5*10**-9; #line width(m)\n", "\n", "#Calculation\n", "cl=lamda**2/delta_lamda; #coherence length(m)\n", "\n", "#Result\n", "print \"coherence length is\",round(cl/10**3,2),\"km\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 12.8, Page number 362" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "areal speed is 0.117 *10**-8 m**2\n", "intensity of image is 428.48 *10**5 watt/m**2\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda=7000*10**-10; #wavelength(m)\n", "d=5*10**-3; #aperture(m)\n", "f=0.2; #focal length(m)\n", "P=50*10**-3; #power(W)\n", "\n", "#Calculation\n", "d_theta=1.22*lamda/d; #angular speed(radian)\n", "A=(d_theta*f)**2; #areal speed(m**2)\n", "I=P/A; #intensity of image(watt/m**2)\n", "\n", "#Result\n", "print \"areal speed is\",round(A*10**8,3),\"*10**-8 m**2\"\n", "print \"intensity of image is\",round(I/10**5,2),\"*10**5 watt/m**2\"\n", "print \"answer given in the book is wrong\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }