{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 10: Dielectric Properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.1, Page number 276" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "relative permittivity is 5.86\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "P=4.3*10**-8; #polarisation(per cm**2)\n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "E=1000; #electric field(V/m)\n", "\n", "#Calculations\n", "epsilonr=1+(P/(epsilon0*E)); #relative permittivity\n", "\n", "#Result\n", "print \"relative permittivity is\",round(epsilonr,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.2, Page number 276" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electric displacement is 36 *10**-6 C/m**2\n", "polarisation is 27 *10**-6 C/m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=4;\n", "epsilon0=9*10**-12; #relative permeability(F/m)\n", "E=10**6; #electric field(V/m)\n", "\n", "#Calculations\n", "D=k*epsilon0*E; #electric displacement(C/m**2)\n", "P=epsilon0*E*(k-1); #polarisation(C/m**2)\n", "\n", "#Result\n", "print \"electric displacement is\",int(D*10**6),\"*10**-6 C/m**2\"\n", "print \"polarisation is\",int(P*10**6),\"*10**-6 C/m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.3, Page number 277" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electric field is 0.113 N/C\n", "polarisation is 4e-12 C/m**2\n", "induced dipole moment is 2e-18 cm\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=5;\n", "epsilon0=8.86*10**-12; #relative permeability(F/m)\n", "D=5*10**-12; #electric displacement(C/m**2)\n", "V=0.5*10**-6;\n", "\n", "#Calculations\n", "E=D/(k*epsilon0); #electric field(N/C)\n", "P=D*(1-(1/k)); #polarisation(C/m**2)\n", "dm=P*V; #induced dipole moment(cm)\n", "\n", "#Result\n", "print \"electric field is\",round(E,3),\"N/C\"\n", "print \"polarisation is\",P,\"C/m**2\"\n", "print \"induced dipole moment is\",dm,\"cm\"" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Example number 10.4, Page number 277" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dipole moment is 2.43 *10**-41 coul x metre\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=1.000074;\n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "E=1; #electric field(N/C)\n", "n=2.69*10**25; #molecular density\n", "\n", "#Calculations\n", "p=epsilon0*E*(k-1)/n; #dipole moment(coulx metre)\n", "\n", "#Result\n", "print \"dipole moment is\",round(p*10**41,2),\"*10**-41 coul x metre\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.5, Page number 278" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dipole moment is 3.97 *10**-36 coul-metre\n", "atomic polarizability is 4.4 *10**-41 coul-m**2/volt\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=1.000134;\n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "E=90000; #electric field(N/C)\n", "N=6.023*10**26; #avagadro number\n", "\n", "#Calculations\n", "n=N/22.4;\n", "p=epsilon0*E*(k-1)/n; #dipole moment(coul-metre)\n", "alpha=p/E; #atomic polarizability(coul-m**2/volt)\n", "\n", "#Result\n", "print \"dipole moment is\",round(p*10**36,2),\"*10**-36 coul-metre\"\n", "print \"atomic polarizability is\",round(alpha*10**41,1),\"*10**-41 coul-m**2/volt\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.6, Page number 278" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electric field is 1.43 *10**3 volt/m\n", "electric displacement is 8.9e-08 C/m**2\n", "dipole moment is 7.6 *10**-8 C/m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "k=7;\n", "epsilon0=8.9*10**-12; #relative permeability(F/m)\n", "V0=100; #potential difference(V)\n", "d=10**-2; #displacement(m)\n", "\n", "#Calculations\n", "E0=V0/d; #electric field intensity(volt/m)\n", "E=E0/k; #electric field(N/C)\n", "D=k*E*epsilon0; #electric displacement(C/m**2)\n", "p=epsilon0*E*(k-1); #dipole moment(coul-metre)\n", "\n", "#Result\n", "print \"electric field is\",round(E/10**3,2),\"*10**3 volt/m\"\n", "print \"electric displacement is\",D,\"C/m**2\"\n", "print \"dipole moment is\",round(p*10**8,1),\"*10**-8 C/m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.7, Page number 279" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric constant is 5.0\n", "permittivity is 44.25 *10**-12 coul**2/nt-m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "chi=35.4*10**-12; #electric susceptibility(coul**2/nt-m**2)\n", "\n", "#Calculations\n", "k=1+(chi/epsilon0); #dielectric constant\n", "epsilon=epsilon0*k; #permittivity(coul**2/nt-m**2) \n", "\n", "#Result\n", "print \"dielectric constant is\",k\n", "print \"permittivity is\",round(epsilon*10**12,2),\"*10**-12 coul**2/nt-m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.8, Page number 279" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dipole moment is 2.4437 *10**-41 C/m**2\n", "answer in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "E=100; #electric field(N/C)\n", "epsilonr=1.000074; #dielectric constant\n", "n=2.68*10**27; #density\n", "\n", "#Calculations\n", "p=epsilon0*E*(epsilonr-1)/n; #dipole moment(coul-metre)\n", "\n", "#Result\n", "print \"dipole moment is\",round(p*10**41,4),\"*10**-41 C/m**2\"\n", "print \"answer in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.9, Page number 287" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarizability is 1.6557 *10**-41 Fm**2\n", "relative permittivity is 1.0018\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "R=0.053*10**-9; #radius(nm)\n", "N=9.8*10**26; #number of atoms\n", "\n", "#Calculations\n", "alphae=4*math.pi*epsilon0*R**3; #electronic polarizability(Fm**2)\n", "epsilonr=1+(4*math.pi*N*R**3); #relative permittivity\n", "\n", "#Result\n", "print \"electronic polarizability is\",round(alphae*10**41,4),\"*10**-41 Fm**2\"\n", "print \"relative permittivity is\",round(epsilonr,4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.10, Page number 288" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarizability is 2.242e-41 Fm**2\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "epsilonr=1.0000684; #dielectric constant\n", "N=2.7*10**25; #number of atoms\n", "\n", "#Calculations\n", "alphae=epsilon0*(epsilonr-1)/N; #electronic polarizability(Fm**2)\n", "\n", "#Result\n", "print \"electronic polarizability is\",alphae,\"Fm**2\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.11, Page number 288" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric constant is 1.339\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.854*10**-12; #relative permeability(F/m)\n", "alphae=10**-40; #dielectric polarizability(Fm**2)\n", "N=3*10**28; #number of atoms\n", "\n", "#Calculations\n", "epsilonr=1+(N*alphae/epsilon0); #dielectric constant\n", "\n", "#Result\n", "print \"dielectric constant is\",round(epsilonr,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.12, Page number 288" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarizability is 7.9 *10**-40 Fm**2\n", "answer in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #relative permeability(F/m)\n", "epsilonr=1.0024; #dielectric constant\n", "N=2.7*10**25; #number of atoms\n", "\n", "#Calculations\n", "alphae=epsilon0*(epsilonr-1)/N; #electronic polarizability(Fm**2)\n", "\n", "#Result\n", "print \"electronic polarizability is\",round(alphae*10**40,1),\"*10**-40 Fm**2\"\n", "print \"answer in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.13, Page number 289" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "radius of electron cloud is 5.86 *10**-11 m\n", "displacement is 6.99987 *10**-17 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilonr=1.0000684; #dielectric constant\n", "N=2.7*10**25; #number of atoms\n", "X=1/(9*10**9);\n", "E=10**6; #electric field(V/m)\n", "Z=2; #atomic number\n", "e=1.6*10**-19; #electron charge(coulomb)\n", "\n", "#Calculations\n", "R=((epsilonr-1)/(4*math.pi*N))**(1/3); #radius of electron cloud(m)\n", "x=X*E*R**3/(Z*e); #displacement(m)\n", "\n", "#Result\n", "print \"radius of electron cloud is\",round(R*10**11,2),\"*10**-11 m\"\n", "print \"displacement is\",round(x*10**17,5),\"*10**-17 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.14, Page number 293" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric constant is 1.38\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #dielectric constant\n", "N=3*10**28; #number of atoms\n", "alphae=10**-40; #dielectric polarizability(Fm**2)\n", "\n", "#Calculations\n", "x=N*alphae/(3*epsilon0);\n", "epsilonr=(1+(2*x))/(1-x); #dielectric constant\n", "\n", "#Result\n", "print \"dielectric constant is\",round(epsilonr,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.15, Page number 294" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric constant is 3.8\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #dielectric constant\n", "Na=6.023*10**26; #number of atoms\n", "M=32; #atomic mass\n", "alphae=3.28*10**-40; #dielectric polarizability(Fm**2)\n", "rho=2.08*10**3; #density(kg/m**3)\n", "\n", "#Calculations\n", "x=Na*rho*alphae/(M*3*epsilon0);\n", "epsilonr=(1+(2*x))/(1-x); #dielectric constant\n", "\n", "#Result\n", "print \"dielectric constant is\",round(epsilonr,1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.16, Page number 294" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarizability is 3.29 *10**-40 Fm**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilon0=8.85*10**-12; #dielectric constant\n", "Na=6.02*10**26; #number of atoms\n", "epsilonr=3.75; #dielectric constant\n", "M=32; #atomic mass\n", "rho=2050; #density(kg/m**3)\n", "gama=1/3; #internal field constant\n", "\n", "#Calculations\n", "N=Na*rho/M; #number of atoms\n", "alphae=((epsilonr-1)/(epsilonr+2))*(3*epsilon0/N); #electronic polarizability(Fm**2)\n", "\n", "#Result\n", "print \"electronic polarizability is\",round(alphae*10**40,2),\"*10**-40 Fm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.17, Page number 295" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio between electronic and ionic polarizability is 1.738\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilonr=4.94; #dielectric constant\n", "n2=2.69;\n", "\n", "#Calculations\n", "x=(epsilonr-1)/(epsilonr+2);\n", "y=(n2-1)/(n2+2);\n", "alpha=1/((x/y)-1); #ratio between electronic and ionic polarizability\n", "\n", "#Result\n", "print \"ratio between electronic and ionic polarizability is\",round(alpha,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Example number 10.18, Page number 296" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "percentage of ionic polarizability is 51.4 %\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "epsilonr=5.6; #dielectric constant\n", "n=1.5;\n", "\n", "#Calculations\n", "x=(epsilonr+2)/(epsilonr-1);\n", "y=(n**2-1)/(n**2+2);\n", "alpha=(1-(x*y))*100; #percentage of ionic polarizability\n", "\n", "#Result\n", "print \"percentage of ionic polarizability is\",round(alpha,1),\"%\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }