{ "metadata": { "name": "", "signature": "sha256:b2d7b45e6d7157611952afeb132c76e4391a2a303ceb4704e095dc42c36f50c3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "18: Transport properties of semiconductors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.1, Page number 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T=300; #temperature(K)\n", "mew_e=0.4; #electron mobility(m**2/Vs)\n", "mew_h=0.2; #hole mobility(m**2/Vs)\n", "Eg=0.7; #band gap(eV)\n", "m0=9.1*10**-31; #mass of electron(kg)\n", "mestar=0.55*m0; #electron effective mass(kg)\n", "mhstar=0.37*m0; #hole effective mass(kg)\n", "k=1.38*10**-23; #boltzmann constant\n", "h=6.626*10**-34; #planck's constant\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "a=(2*math.pi*k*T/(h**2))**(3/2);\n", "Eg=Eg*e; #band gap(J)\n", "b=-Eg/(k*T); \n", "ni=2*a*((mhstar*mestar)**(3/4))*math.exp(b); #intrinsic concentration(per m**3)\n", "sigma=ni*e*(mew_e+mew_h); #intrinsic conductivity(per ohm m)\n", "rho=1/sigma; #intrinsic resistivity(ohm m)\n", "\n", "#Result\n", "print \"intrinsic concentration is\",round(ni/10**13,3),\"*10**13 per m**3\"\n", "print \"intrinsic conductivity is\",round(sigma*10**6,3),\"*10**-6 per ohm m\"\n", "print \"intrinsic resistivity is\",round(rho/10**6,2),\"*10**6 ohm m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intrinsic concentration is 1.352 *10**13 per m**3\n", "intrinsic conductivity is 1.298 *10**-6 per ohm m\n", "intrinsic resistivity is 0.77 *10**6 ohm m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.2, Page number 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T=300; #temperature(K)\n", "k=1.38*10**-23; #boltzmann constant\n", "Nd=10**16; #donor concentration(per cm**3)\n", "ni=1.45*10**10; #intrinsic concentration(per cm**3)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "Efd_Efi=k*T*math.log(Nd/ni); #fermi energy(J)\n", "Efd_Efi=Efd_Efi/e; #fermi energy(eV)\n", "\n", "#Result\n", "print \"fermi energy is\",round(Efd_Efi,3),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fermi energy is 0.348 eV\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.3, Page number 27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "mew_e=1.35; #electron mobility(m**2/Vs)\n", "mew_h=0.45; #hole mobility(m**2/Vs)\n", "ni=1.45*10**13; #intrinsic concentration(per m**3)\n", "NSi=5*10**28; #atomic concentration(per m**3)\n", "e=1.6*10**-19; #charge of electron(c)\n", "LbyA=1; #Si crystal(cm**3)\n", "\n", "#Calculation\n", "sigmai=ni*e*(mew_e+mew_h); #intrinsic conductivity(per ohm m)\n", "rho=1/sigmai; #intrinsic resistivity(ohm m)\n", "LbyA=LbyA*10**2; #Si crystal(m**3)\n", "R1=rho*LbyA; #resistance(ohm)\n", "Nd=NSi/10**9; #donor concentration(per m**3)\n", "p=(ni**2)/Nd; #hole concentration(per m**3)\n", "sigma=Nd*e*mew_e; #conductivity(per ohm m)\n", "R2=(1/sigma)*100; #resistance(ohm) \n", "\n", "#Result\n", "print \"resistance of 1cm**3 pure Si crystal is\",round(R1/10**7,2),\"*10**7 ohm\"\n", "print \"resistance when crystal is doped with arsenic is\",round(R2,2),\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistance of 1cm**3 pure Si crystal is 2.39 *10**7 ohm\n", "resistance when crystal is doped with arsenic is 9.26 ohm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.4, Page number 28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T=300; #temperature(K)\n", "rho=2.12; #resistivity(ohm m)\n", "mew_e=0.36; #electron mobility(m**2/Vs)\n", "mew_h=0.17; #hole mobility(m**2/Vs)\n", "mestar=0.5*m0; #electron effective mass(kg)\n", "mhstar=0.37*m0; #hole effective mass(kg)\n", "m0=9.1*10**-31; #mass of electron(kg)\n", "k=1.38*10**-23; #boltzmann constant\n", "h=6.626*10**-34; #planck's constant\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "sigma=1/rho; #conductivity(per ohm m)\n", "ni=sigma/(e*(mew_e+mew_h)); #intrinsic concentration(per m**3)\n", "a=(2*math.pi*k*T/(h**2))**(3/2);\n", "NC=2*a*(mestar**(3/2));\n", "NV=2*a*(mhstar**(3/2));\n", "b=(NC*NV)**(1/2);\n", "Eg=2*k*T*math.log(b/ni); #energy gap of semiconductor(J)\n", "Eg=Eg/e; #energy gap of semiconductor(eV)\n", "\n", "#Result\n", "print \"energy gap of semiconductor is\",round(Eg,3),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy gap of semiconductor is 0.727 eV\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.5, Page number 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge of electron(c)\n", "mew_e=0.39; #electron mobility(m**2/Vs)\n", "mew_h=0.19; #hole mobility(m**2/Vs)\n", "ni=2.4*10**19; #intrinsic concentration(per m**3)\n", "\n", "#Calculation\n", "sigmai=ni*e*(mew_e+mew_h); #conductivity of Ge(per Wm)\n", "\n", "#Result\n", "print \"conductivity of Ge is\",round(sigmai,3),\"per Wm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductivity of Ge is 2.227 per Wm\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.6, Page number 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "EC_EF300=-0.3; #position of fermi level(eV)\n", "T1=300; #temperature(K)\n", "T2=330; #temperature(K)\n", "k=1.38*10**-23; #boltzmann constant\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "EC_EF330=-EC_EF300*T2/T1; #new position of fermi level(eV)\n", "\n", "#Result\n", "print \"new position of fermi level is\",EC_EF330,\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "new position of fermi level is 0.33 eV\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.7, Page number 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T1=20; #temperature(C)\n", "T2=40; #temperature(C)\n", "Eg=0.72; #energy gap(eV)\n", "e=1.6*10**-19; #charge of electron(c)\n", "k=1.38*10**-23; #boltzmann constant\n", "sigmai20=2; #conductivity(per ohm m)\n", "\n", "#Calculation\n", "T1=T1+273; #temperature(K)\n", "T2=T2+273; #temperature(K)\n", "Eg=Eg*e; #energy gap(J)\n", "a=(T2/T1)**(3/2);\n", "b=Eg/(2*k);\n", "c=(1/T1)-(1/T2);\n", "ni40byni20=a*math.exp(b*c); #ratio of intrinsic concentration\n", "sigmai40=sigmai20*ni40byni20; #conductivity at 40C(per ohm m)\n", "\n", "#Result\n", "print \"conductivity at 40C is\",round(sigmai40,3),\"per ohm m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductivity at 40C is 5.487 per ohm m\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.8, Page number 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge of electron(c)\n", "k=1.38*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "m0=9.1*10**-31; #mass of electron(kg)\n", "Eg=1.1; #energy gap(eV)\n", "mestar=0.31*m0; #effective mass of electron(kg)\n", "\n", "#Calculation\n", "Eg=Eg*e; #energy gap(J)\n", "a=(2*math.pi*k*T*mestar/(h**2))**(3/2);\n", "b=-Eg/(2*k*T); \n", "ni=2*a*math.exp(b); #intrinsic concentration(per m**3)\n", "\n", "#Result\n", "print \"intrinsic concentration is\",round(ni/10**15,4),\"*10**15 per m**3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intrinsic concentration is 2.5367 *10**15 per m**3\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.9, Page number 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "RH=-0.55*10**-10; #hall coefficient(m**3/As)\n", "sigma=5.9*10**7; #conductivity(per ohm m)\n", "\n", "#Calculation\n", "mewd=-RH*sigma; #drift mobility(m**2/Vs)\n", "\n", "#Result\n", "print \"drift mobility is\",round(mewd*10**3,1),\"*10**-3 m**2/Vs\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "drift mobility is 3.2 *10**-3 m**2/Vs\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.10, Page number 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "sigma=5.9*10**7; #conductivity(per ohm m)\n", "e=1.6*10**-19; #charge of electron(c)\n", "mew=3.2*10**-3; #drift velocity(m**2/Vs)\n", "N=6.022*10**23; #avagadro number\n", "ne=8900*10**3; #number of free electrons per atom\n", "w=63.5; #atomic weight of Cu(kg)\n", "\n", "#Calculation\n", "ni=sigma/(e*mew); #intrinsic concentration(per m**3)\n", "n=N*ne/w; #concentration of free electrons(per m**3)\n", "a=ni/n; #average number of electrons\n", "\n", "#Result\n", "print \"intrinsic concentration is\",round(ni/10**29,2),\"*10**29 per m**3\"\n", "print \"concentration of free electrons is\",round(n/10**28,2),\"*10**28 per m**3\"\n", "print \"average number of electrons is\",int(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intrinsic concentration is 1.15 *10**29 per m**3\n", "concentration of free electrons is 8.44 *10**28 per m**3\n", "average number of electrons is 1\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.11, Page number 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "RH=3.66*10**-11; #hall coefficient(m**3/As)\n", "sigma=112*10**7; #conductivity(per ohm m)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "n=3*math.pi/(8*RH*e); #concentration of electrons(per m**3)\n", "mew_e=sigma/(n*e); #electron mobility(m**2/Vs)\n", "\n", "#Result\n", "print \"concentration of electrons is\",round(n/10**29,1),\"*10**29 per m**3\"\n", "print \"electron mobility is\",round(mew_e,3),\"m**2/Vs\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "concentration of electrons is 2.0 *10**29 per m**3\n", "electron mobility is 0.035 m**2/Vs\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 18.12, Page number 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "i=50; #current(A)\n", "B=1.5; #magnetic field(T)\n", "n=8.4*10**28; #concentration of electrons(per m**3)\n", "t=0.5; #thickness(cm)\n", "w=2; #width of slab(cm)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "w=w*10**-2; #width of slab(m)\n", "VH=B*i/(n*e*w); #hall voltage(V)\n", "\n", "#Result\n", "print \"hall voltage is\",round(VH*10**7,2),\"*10**-7 V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hall voltage is 2.79 *10**-7 V\n" ] } ], "prompt_number": 39 } ], "metadata": {} } ] }