{ "metadata": { "name": "", "signature": "sha256:ea49c9c54a7abfea63e3838cff940d23d5976ae6af1b86c7e497f10ce35239cd" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "14: Waves and Particles" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.1, Page number 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=150; #potential difference(V)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "h=6.626*10**-34; #planck's constant\n", "\n", "#Calculation\n", "lamda=h/math.sqrt(2*m*e*V); #de broglie wavelength of electron(m)\n", "\n", "#Result\n", "print \"de broglie wavelength of electron is\",round(lamda*10**10,5),\"*10**-10 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de broglie wavelength of electron is 1.00256 *10**-10 m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.2, Page number 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=0.025; #energy of electron(MeV)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "h=6.626*10**-34; #planck's constant\n", "\n", "#Calculation\n", "E=E*10**6*e; #energy of electron(J)\n", "v=math.sqrt(2*E/m); #velocity of electron(m/s)\n", "lamda=h/(m*v); #de broglie wavelength(m)\n", "\n", "#Result\n", "print \"de broglie wavelength is\",round(lamda*10**10,5),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de broglie wavelength is 0.07766 angstrom\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.3, Page number 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=1; #kinetic energy of electron(MeV)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "h=6.626*10**-34; #planck's constant\n", "\n", "#Calculation\n", "E=E*10**6*e; #energy of electron(J)\n", "v=math.sqrt(2*E/m); #velocity of electron(m/s)\n", "lamda=h/(m*v); #de broglie wavelength of electron(m)\n", "\n", "#Result\n", "print \"de broglie wavelength of electron is\",round(lamda*10**10,5),\"angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "de broglie wavelength of electron is 0.01228 angstrom\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.4, Page number 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=100; #potential difference(V)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.1*10**-31; #mass of electron(kg)\n", "h=6.626*10**-34; #planck's constant\n", "c=3*10**8; #velocity of light(m/s)\n", "\n", "#Calculation\n", "v=math.sqrt(2*e*V/m); #velocity of electron(m/s)\n", "u=c**2/v; #phase velocity of electron(m/s)\n", "lamda=h/(m*v); #de broglie wavelength of electron(m)\n", "p=m*v; #momentum of electron(kg m/s)\n", "vbar=1/lamda; #wave number of electron wave(per m)\n", "\n", "#Result\n", "print \"velocity of electron is\",round(v/10**6,5),\"*10**6 m/s\"\n", "print \"phase velocity of electron is\",round(u/10**10,4),\"*10**10 m/s\"\n", "print \"de broglie wavelength of electron is\",round(lamda*10**10,3),\"angstrom\"\n", "print \"momentum of electron is\",round(p*10**24,3),\"*10**-24 kg m/s\"\n", "print \"wave number of electron wave is\",round(vbar/10**9,3),\"*10**9 per m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity of electron is 5.92999 *10**6 m/s\n", "phase velocity of electron is 1.5177 *10**10 m/s\n", "de broglie wavelength of electron is 1.228 angstrom\n", "momentum of electron is 5.396 *10**-24 kg m/s\n", "wave number of electron wave is 8.144 *10**9 per m\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.5, Page number 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "deltax=10**-14; #radius of nucleus(m)\n", "m=1.67*10**-27; #mass of proton(kg)\n", "h=6.626*10**-34; #planck's constant\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "deltap=h/(2*math.pi*deltax); #uncertainity in momentum of proton(kg m/s)\n", "KE=deltap**2/(2*m); #minimum kinetic energy of proton(J)\n", "KE=KE/(e*10**6); #minimum kinetic energy of proton(MeV)\n", "\n", "#Result\n", "print \"uncertainity in momentum of proton is\",round(deltap*10**20,4),\"*10**-20 kg m/s\"\n", "print \"minimum kinetic energy of proton is\",round(KE,3),\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "uncertainity in momentum of proton is 1.0546 *10**-20 kg m/s\n", "minimum kinetic energy of proton is 0.208 MeV\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.6, Page number 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "deltax=0.1*10**-10; #uncertainity in position of electron(m)\n", "h=6.626*10**-34; #planck's constant\n", "\n", "#Calculation\n", "deltap=h/(2*math.pi*deltax); #uncertainity in momentum of electron(kg m/s)\n", "\n", "#Result\n", "print \"uncertainity in momentum of electron is\",round(deltap*10**23,4),\"*10**-23 kg m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "uncertainity in momentum of electron is 1.0546 *10**-23 kg m/s\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.7, Page number 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m=9.1*10**-31; #mass of electron(kg)\n", "h=6.626*10**-34; #planck's constant\n", "a=1*10**-10; #width of potential wall(m)\n", "n1=1; \n", "n2=2;\n", "n3=3;\n", "e=6.24*10**18; #conversion factor from J to eV\n", "\n", "#Calculation\n", "En=(h**2)/(8*m*(a**2)); #energy of electron(J)\n", "E1=En*n1**2; #energy of 1st excited state(J)\n", "E1=E1*e; #energy of 1st excited state(eV)\n", "E2=En*n2**2; #energy of 2nd excited state(J)\n", "E2=E2*e; #energy of 2nd excited state(eV)\n", "E3=En*n3**2; #energy of 3rd excited state(J)\n", "E3=E3*e; #energy of 3rd excited state(eV)\n", "\n", "#Result\n", "print \"first 3 permitted energy levels of electron are\",round(E1,2),\"eV\",round(E2,2),\"eV and\",round(E3,2),\"eV\"\n", "print \"answers given in the book vary due to rounding off errors\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "first 3 permitted energy levels of electron are 37.63 eV 150.53 eV and 338.69 eV\n", "answers given in the book vary due to rounding off errors\n" ] } ], "prompt_number": 30 } ], "metadata": {} } ] }