{ "metadata": { "name": "", "signature": "sha256:f4c05fd79d4d56cbd4b08f847aeb0bba767b388c9bbe1bea8066d97e3ac78212" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "5: Diffraction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.1, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=1;\n", "lamda=600*10**-9; #wavelength(m)\n", "theta=35; #angle at which first minimum falls(degrees)\n", "\n", "#Calculation \n", "theta=theta*math.pi/180; #angle at which first minimum falls(radian)\n", "d=((n*lamda)/math.sin(theta))*10**6; #width of the slit(micro m)\n", "\n", "#Result\n", "print \"The width of the slit is\",round(d,2),\"micro m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The width of the slit is 1.05 micro m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.2, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=0.95; #distance of the screen from the slit(m)\n", "lamda=589*10**-9; #wavelength(m)\n", "d=0.5*10**-3; #width of the slit(m)\n", "\n", "#Calculation \n", "y=((2*D*lamda)/d)*10**3; #width of a central band(mm)\n", "\n", "#Result\n", "print \"The width of the central band is\",round(y,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The width of the central band is 2.24 mm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.3, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=1.1; #distance of the screen from the slit(m)\n", "lamda=589*10**-9; #wavelength(m)\n", "y=4.5*10**-3; #distance of first minimum on either side of central maximum(m)\n", "\n", "#Calculation \n", "d=((D*lamda)/y)*10**3 #slit width(mm)\n", "\n", "#Result\n", "print \"The slit width is\",round(d,3),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The slit width is 0.144 mm\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.4, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=4;\n", "lamda=589.6*10**-9; #wavelength(m)\n", "D=0.95; #distance of the screen from the slit(m)\n", "w=0.28*10**-3; #width of the slit(m)\n", "\n", "#Calculation \n", "d=((n*lamda*D)/w)*10**3; #distance between centres(mm)\n", "\n", "#Result\n", "print \"The distance between centres of central maximum and the fourth dark fringe is\",int(d),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance between centres of central maximum and the fourth dark fringe is 8 mm\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.5, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "s=5*math.pi/2; #secondary maximum\n", "\n", "#Calculation \n", "I=(math.sin(s)/s)**2; #I2/I0\n", "\n", "#Result\n", "print \"Ratio of intensities of central & second secondary maximum is\",round(I,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of intensities of central & second secondary maximum is 0.016\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.6, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda=450*10**-9; #wavelength(m)\n", "n=2;\n", "dlambda=1*10**-9; #difference in wavelength(m)\n", "\n", "#Calculation \n", "N=lamda/(n*dlambda); #minimum number of lines per cm \n", "\n", "#Result\n", "print \"The minimum number of lines per cm is\",N/2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum number of lines per cm is 112.5\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.7, Page number 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=1;\n", "lamda=650*10**-9; #wavelength(m)\n", "d=2*10**-6; #width of the slit(m)\n", "\n", "#Calculation \n", "theta=math.asin((n*lamda)/d); #angle at which first minimum will be observed(radian)\n", "theta=theta*180/math.pi; #angle at which first minimum will be observed(degrees)\n", "\n", "#Result\n", "print \"The angle at which first minimum will be observed is\",round(theta,3),\"degrees\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle at which first minimum will be observed is 18.966 degrees\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.8, Page number 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda=600*10**-9; #wavelength(m)\n", "y=2*10**-3; #width of the central band(m)\n", "D=1; #distance of the screen from the slit(m)\n", "\n", "#Calculation \n", "d=((2*D*lamda)/y)*10**3; #slit width(mm)\n", "\n", "#Result\n", "print \"The slit width is\",d,\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The slit width is 0.6 mm\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.9, Page number 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "y=6*10**-3; #first minimum is observed(m)\n", "d=90*10**-6; #slit width(m)\n", "D=0.98; #distance of the screen from the slit(m)\n", "\n", "#Calculation \n", "lamda=((y*d)/D)*10**9; #wavelength(nm)\n", "\n", "#Result\n", "print \"The wavelength of light used is\",int(lamda),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of light used is 551 nm\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.10, Page number 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=1;\n", "lambda1=450*10**-9; #wavelength of first spectral line(m)\n", "d=1/5000; #number of lines\n", "\n", "#Calculation \n", "theta1=math.asin((n*lambda1)/d); \n", "theta1=round(theta1*10**2*180/math.pi);\n", "theta2=theta1+2.97;\n", "theta2=theta2*math.pi/180;\n", "lambda2=d*math.sin(theta2)/n; #wavelength of second spectral line(nm)\n", "\n", "#Result\n", "print \"The wavelength of second spectral line is\",int(lambda2*10**7),\"nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of second spectral line is 550 nm\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 5.11, Page number 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=3;\n", "lamda=700*10**-9; #wavelength(m)\n", "theta=90; #angle(degrees)\n", "\n", "#Calculation \n", "theta=theta*math.pi/180; #angle(radian)\n", "d=n*lamda/math.sin(theta); #grating element(m)\n", "\n", "#Result\n", "print \"The minimum grating element required to observe the entire third order spectrum is\",d*10**6,\"*10**-6 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum grating element required to observe the entire third order spectrum is 2.1 *10**-6 m\n" ] } ], "prompt_number": 45 } ], "metadata": {} } ] }