{ "metadata": { "name": "", "signature": "sha256:305dcc155810a92329b40a851ec0d721020f53211b825d9c1f3b0e3bb9312285" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "1: Acoustics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.1, Page number 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "p=50; #sound waves with output power(W)\n", "r=4; #Distance(m)\n", "\n", "#Calculation\n", "I=p/(4*math.pi*r**2) #Intensity(W/m**2)\n", "\n", "#Result\n", "print \"Intensity of sound at a distance of 4m from the source is\",round(I,2),\"W/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Intensity of sound at a distance of 4m from the source is 0.25 W/m**2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.2, Page number 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Io=10**-12; #Initial intensity of sound(W/m**2)\n", "d=50; #number of decibels given by 10log(Io/I1)\n", "P=70; #Output power(W)\n", "\n", "#Calculation\n", "I1=(10**5)*Io; #Intensity(W/m**2)\n", "r=math.sqrt(P/(4*math.pi*I1)); #distance(m)\n", "\n", "#Result\n", "print \"The distance at which sound reduces to a level of 50dB is\",round(r/10**3,2),\"*10**3 m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The distance at which sound reduces to a level of 50dB is 7.46 *10**3 m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.3, Page number 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "v=8000; #volume of the hall(m**3)\n", "T=1.5; #Reverberation time(sec)\n", "\n", "#Calculation\n", "A=(0.161*v)/T; #Total absorption time(m**2 sabine)\n", "\n", "#Result\n", "print \"The total reverberation in the hall is\",round(A,2),\"m**2 sabine\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total reverberation in the hall is 858.67 m**2 sabine\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.4, Page number 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l=25; #length of the hall(m)\n", "b=20; #breadth of the hall(m)\n", "h=10; #height of the hall(m)\n", "T=4; #Reverberation time(s)\n", "\n", "#Calculation\n", "V=l*b*h; #Volume of the hall(m**3)\n", "A=(0.161*V)/T; #Total absorption time(m**2 sabine)\n", "a=A/(2*((l*b)+(b*h)+(l*h))); #a is absorption co-efficient\n", "\n", "#Result\n", "print \"The average absorption co-efficients of surfaces is\",round(a,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The average absorption co-efficients of surfaces is 0.106\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.5, Page number 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Y=77*(10**10); #Youngs modulus for quartz(dyne/cm**2)\n", "rho=2.6; #density of quartz(g/cm**3)\n", "t=0.4; #thickness(cm)\n", "\n", "#Calculation\n", "f=((1/(2*t))*math.sqrt(Y/rho))*10**-3; #frequency(kHz)\n", "\n", "#Result\n", "print \"The frequency of ultrasonic waves produced is\",int(f),\"kHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of ultrasonic waves produced is 680 kHz\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.6, Page number 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Y=81*10**10; #Young's modulus for barium titanate(dynes/cm**2)\n", "rho=5.51; #density of barium titanate(g/cm**3)\n", "f=900; #frequency of ultrasonic waves(kHZ)\n", "\n", "#Calculation\n", "t=((1/(2*f))*math.sqrt(Y/rho))*10**-2; #thickness of crystal(mm)\n", "\n", "#Result\n", "print \"The thickness of the crystal to produce ultrasonic waves is\",round(t,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the crystal to produce ultrasonic waves is 2.13 mm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.7, Page number 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r=3; #distance(m)\n", "I=0.86; #Intensity of sound source(W/m**2)\n", "\n", "#Calculation\n", "P=4*math.pi*r**2*I; #Power of the sound source(W)\n", "\n", "#Result\n", "print \"The output power of the sound source is\",round(P,2),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output power of the sound source is 97.26 W\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.8, Page number 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=60; #Number of decibels given by 10*log(I/I0)\n", "I0=10**-12; #Initial intensity of sound(W/m**2)\n", "I=10**-6; #since 10log(I/I0)=60\n", "r=200; #distance(m)\n", "\n", "#Calculation\n", "P=4*math.pi*r**2*I; #output power of the sound source(W)\n", "\n", "#Result\n", "print \"The output power of the sound source is\",round(P,1),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output power of the sound source is 0.5 W\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.9, Page number 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=9250; #volume of the hall(m**3)\n", "A=900; #Total absorption(m**2 sabine)\n", "\n", "#Calculation\n", "T=(0.161*V)/A; #Reverberation time(s)\n", "\n", "#Result\n", "print \"The reverberation time in a hall is\",round(T,2),\"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The reverberation time in a hall is 1.65 s\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.10, Page number 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "f1=400; #Initial frequency(kHZ)\n", "f2=500; #New frequency(kHZ)\n", "t1=3; #initial thickness of the crystal(mm)\n", "\n", "#Calculation\n", "t2=(f1*t1)/f2; #required thickness(mm)\n", "\n", "#Result\n", "print \"The required thickness of the crystal is\",t2,\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The required thickness of the crystal is 2.4 mm\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.11, Page number 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "t1=2; #Initial thickness(mm)\n", "t2=2.8; #New thickness(mm)\n", "\n", "#Calculation\n", "F=t1/t2; #ratio of new to old frequencies\n", "\n", "#Result\n", "print \"The ratio of new to old frequencies is\",round(F,3)," ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of new to old frequencies is 0.714\n" ] } ], "prompt_number": 23 } ], "metadata": {} } ] }