{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#4: Defects in Crystals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 4.1, Page number 4.5" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of vacancies is 1.082 *10**5\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Ev=1;\n", "k=1.38*10**-23; #boltzmann constant(J/K)\n", "e=1.6*10**-19; #charge(eV)\n", "\n", "#Calculation\n", "r=Ev/(2.303*1000*k/e); \n", "n=10**r; #ratio of n1000/n500\n", "\n", "#Result\n", "print \"ratio of vacancies is\",round(n/10**5,3),\"*10**5\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 4.2, Page number 4.5" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of vacancies per atom at 350K is 0.5486 *10**-17\n", "number of vacancies per atom at 500K is 0.827 *10**-12\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Ev=1.2;\n", "k=1.38*10**-23; #boltzmann constant(J/K)\n", "e=1.6*10**-19; #charge(eV)\n", "T1=350; #temperature(K)\n", "T2=500; #temperature(K)\n", "\n", "#Calculation\n", "x1=Ev/(2.303*k*T1/e);\n", "n1=1/(10**x1); #number of vacancies per atom at 350K\n", "x2=Ev/(2.303*k*T2/e);\n", "n2=1/(10**x2); #number of vacancies per atom at 500K\n", "\n", "#Result\n", "print \"number of vacancies per atom at 350K is\",round(n1*10**17,4),\"*10**-17\"\n", "print \"number of vacancies per atom at 500K is\",round(n2*10**12,3),\"*10**-12\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 4.3, Page number 4.7" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average energy required is 1.971 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=2.82*10**-10; #distance(m)\n", "k=1.38*10**-23; #boltzmann constant(J/K)\n", "e=1.6*10**-19; #charge(eV)\n", "T=273+25; #temperature(K)\n", "sd=5*10**11; #schotky defects(per m**3)\n", "\n", "#Calculation\n", "V=(2*d)**3; #volume of unit cell(m**3)\n", "N=4/V; #density of ion pairs\n", "x=round(math.log10(N/sd),2);\n", "Es=2*(k/e)*T*2.303*x; #average energy required(eV)\n", "\n", "#Result\n", "print \"average energy required is\",round(Es,3),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 4.4, Page number 4.8" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio of Frenkel defects is 1.125 *10**-6\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "T1=273+25; #temperature(K)\n", "T2=273+350; #temperature(K)\n", "Ef=1.35; #energy(eV)\n", "k=8.625*10**-5;\n", "\n", "#Calculation\n", "x=(Ef/k)*((1/(2*T1))-(1/(2*T2)))/2.303;\n", "r=1/(10**round(x,3)); #ratio of Frenkel defects\n", "\n", "#Result\n", "print \"ratio of Frenkel defects is\",round(r*10**6,3),\"*10**-6\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }