{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#10: Dielectric properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.1, Page number 10.23" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy stored in the condenser is 1.0 J\n", "energy stored in the dielectric is 0.99 J\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "C=2*10**-6; #capacitance(F)\n", "V=1000; #voltage(V)\n", "epsilon_r=100;\n", "\n", "#Calculation\n", "W=C*V**2/2; #energy stored in the condenser(J)\n", "C0=C/epsilon_r;\n", "W0=C0*V**2/2;\n", "E=1-W0; #energy stored in the dielectric(J)\n", "\n", "#Result\n", "print \"energy stored in the condenser is\",W,\"J\"\n", "print \"energy stored in the dielectric is\",E,\"J\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.2, Page number 10.24" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ratio betwen electronic and ionic polarizability is 1.738\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon_r=4.94;\n", "n2=2.69;\n", "\n", "#Calculation\n", "x=(epsilon_r-1)/(epsilon_r+2);\n", "y=(n2-1)/(n2+2);\n", "r=(x/y)-1; #ratio betwen electronic and ionic polarizability\n", "\n", "#Result\n", "print \"ratio betwen electronic and ionic polarizability is\",round(1/r,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.3, Page number 10.24" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "parallel loss resistance is 10.0 ohm\n", "answer varies due to rounding off errors\n", "parallel loss capacitance is 226.56 *10**-12 Farad\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon_r=2.56;\n", "epsilon_R=2.65*0.7*10**-4;\n", "tan_delta=0.7*10**-4; \n", "A=8*10**-4; #area(m**2)\n", "d=0.08*10**-3; #diameter(m)\n", "f=1*10**6; #frequency(Hz)\n", "epsilon0=8.85*10**-12;\n", "\n", "#Calculation\n", "Rp=d/(2*math.pi*f*epsilon0*epsilon_R*A); #parallel loss resistance(ohm)\n", "Cp=A*epsilon0*epsilon_r/d; #parallel loss capacitance(Farad)\n", "\n", "#Result\n", "print \"parallel loss resistance is\",round(Rp/10**6),\"ohm\"\n", "print \"answer varies due to rounding off errors\"\n", "print \"parallel loss capacitance is\",round(Cp*10**12,2),\"*10**-12 Farad\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.4, Page number 10.25" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric constant of material is 1.339\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=3*10**28; #number of atoms(per m**3)\n", "alphae=10**-40; \n", "epsilon0=8.854*10**-12;\n", "\n", "#Calculation\n", "epsilon_r=1+(N*alphae/epsilon0); #dielectric constant of material\n", "\n", "#Result\n", "print \"dielectric constant of material is\",round(epsilon_r,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.5, Page number 10.26" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarizability is 2.243 *10**-41 Fm**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=2.7*10**25; #number of atoms(per m**3)\n", "epsilon0=8.854*10**-12;\n", "epsilon_r=1.0000684;\n", "\n", "#Calculation\n", "alphae=epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n", "\n", "#Result\n", "print \"electronic polarizability is\",round(alphae*10**41,3),\"*10**-41 Fm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.6, Page number 10.26" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "capacitance is 8.85e-12 F\n", "charge on plates is 8.85e-10 coulomb\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "epsilon0=8.85*10**-12;\n", "A=100*10**-4; #area(m**2)\n", "d=10**-2; #diameter(m)\n", "V=100; #potential(V)\n", "\n", "#Calculation\n", "C=epsilon0*A/d; #capacitance(F)\n", "Q=C*V; #charge on plates(coulomb)\n", "\n", "#Result\n", "print \"capacitance is\",C,\"F\"\n", "print \"charge on plates is\",Q,\"coulomb\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.7, Page number 10.27" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "electronic polarizability is 3.181 *10**-40 Fm**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=6.02*10**26; #avagadro number\n", "d=2050; #density(kg/m**3)\n", "w=32; #atomic weight\n", "gama=1/3; #internal field constant\n", "epsilon0=8.55*10**-12;\n", "epsilon_r=3.75;\n", "\n", "#Calculation\n", "N=n*d/w; #number of atoms(per m**3)\n", "alphae=3*epsilon0*((epsilon_r-1)/(epsilon_r+2))/N; #electronic polarizability(Fm**2)\n", "\n", "#Result\n", "print \"electronic polarizability is\",round(alphae*10**40,3),\"*10**-40 Fm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.8, Page number 10.28" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resultant voltage is 39.73 Volts\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Q=2*10**-10; #charge(C)\n", "d=4*10**-3; #seperation(m)\n", "epsilon_r=3.5;\n", "A=650*10**-6; #area(m**2)\n", "epsilon0=8.85*10**-12;\n", "\n", "#Calculation\n", "V=Q*d/(epsilon0*epsilon_r*A); #resultant voltage(V)\n", "\n", "#Result\n", "print \"resultant voltage is\",round(V,2),\"Volts\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 10.9, Page number 10.28" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dielectric displacement is 265.5 *10**-9 C m**-2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=2*10**-3; #seperation(m)\n", "epsilon_r=6;\n", "V=10; #voltage(V)\n", "epsilon0=8.85*10**-12;\n", "\n", "#Calculation\n", "E=V/d;\n", "D=epsilon0*epsilon_r*E; #dielectric displacement(C m**-2)\n", "\n", "#Result\n", "print \"dielectric displacement is\",round(D*10**9,1),\"*10**-9 C m**-2\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }