{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Quantum Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1, Page 279" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "e = 1.602e-19; # Charge of electron in Coloumb\n", "lamda = 2e-10; # Wavelength of a photon in meters\n", "h = 6.62e-34; # Planc's constant in Joule second\n", "c = 3.e8; # Velocity og light in air in meter per second\n", "\n", "#Calculations\n", "E = (h*c)/(lamda*e);#Thermal conductivity of Ni\n", "p = h/lamda;#The momentum of photon \n", "\n", "#Results\n", "print 'The energy of photon is ',round(E,3),'eV' #Incorrect answer in textbook\n", "print 'The momentum of photon is ',p,'(kg.m)/s'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy of photon is 6198.502 eV\n", "The momentum of photon is 3.31e-24 (kg.m)/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2, Page 280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "h = 6.62e-34; # Planck's constant J.s\n", "v = 440e3; # Operating frequency of radio in Hertz\n", "P = 20e3 ; # Power of radio transmitter in Watts\n", "\n", "#Calculation\n", "n = P/(h*v);# Let n be the number of photons emitted per second\n", "\n", "#Result\n", "print 'Number of photon emitted per second is ',round(n/1e30,2),'*10^30'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of photon emitted per second is 68.66 *10^30\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3, Page 280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "h = 6.62e-34; # Planck's constant in J.s\n", "c = 3e8; # Velocity of ligth in air\n", "t = 18000; # Time of glow - (5*3600) in seconds\n", "P = 30 #Power in watts\n", "lamda = 5893e-10; # Wavelength of emitted ligth in meters\n", "\n", "#calculations\n", "E = (h*c)/lamda; # Energy of a photon\n", "n = (P*t)/E; # let n be the number of photons emitted in 5 hours\n", "\n", "#Result\n", "print 'Number of photons emitted in 5 hours is',round(n/1e24,3),'*10^24'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of photons emitted in 5 hours is 1.602 *10^24\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4, Page 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos\n", "\n", "#Varaible declaration\n", "h = 6.62*1e-34; # Plancl's constant in J.s\n", "c = 3*1e8; # Velocity of light in vacccum in m/s \n", "m = 9.1*1e-31; # Mass of electron in Kg\n", "l = 0.7078*1e-10 # Wavelength in meter\n", "theta = 90;\n", "\n", "#Calculations\n", "delta = (h*(1-round(cos(theta)))/(m*c));\n", "Nlambda = l + delta;\n", "\n", "#Result\n", "print 'The wavelength of scattered X-rays is %.4f A'%(Nlambda/1e-10)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of scattered X-rays is 0.7320 A\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5, Page 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos,degrees,radians\n", "\n", "#Varaible declaration\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in J.s\n", "c = 3e8; # Velocity of light in vaccum\n", "lamda = 1.8e18; # Frequency of the incident rays\n", "theta = 180;#angle in degree\n", "\n", "#Calculations\n", "lamda = c/lamda;\n", "delta = (h*(1-cos(radians(theta))))/(m*c);\n", "Nlambda = lamda+delta;#'Wavelength of scattered X-rays\n", "\n", "#Result\n", "print 'Wavelength of scattered X-rays is %.4f A'%(Nlambda/1e-10)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of scattered X-rays is 1.7152 A\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6, Page 288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos\n", "\n", "#Varaible declaration\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "lamda = 1.12e-10; # Wavelength of light in meters\n", "theta = 90;\n", "\n", "#Calculations\n", "delta = (h*(1-round(cos(theta))))/(m*c);\n", "Nlambda = lamda + delta;#The wavelength of scattered X-rays \n", "E = (h*c)*((1/lamda)-(1/Nlambda)) ;#Energy of electron\n", "\n", "#Results\n", "print 'The wavelength of scattered X-rays is %.3f A'%(Nlambda/1e-10)\n", "print 'Energy of electron is %.2f *10^-17 J'%(E/1e-17)\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of scattered X-rays is 1.144 A\n", "Energy of electron is 3.76 *10^-17 J\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exampe 9.7, Page 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos,radians\n", "\n", "#Varaible declaration\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "lamda = 0.03e-10; # Wavelength of light in meters\n", "theta = 60;#angle in degrees\n", "\n", "#Calculations\n", "delta = (h*(1-cos(radians(theta))))/(m*c);\n", "Nlambda = lamda + delta;\n", "E = ((h*c)*((1./lamda)-(1./Nlambda)))/1.6e-19 ;#Energy of recoiling electron\n", "\n", "#Result\n", "print 'Energy of recoiling electron is %.3f MeV'%(E/1e+6)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of recoiling electron is 0.119 MeV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eample 9.8, Page 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos,radians\n", "\n", "#Varaible declaration\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "lamda = 0.5e-10; # Wavelength of light in meters\n", "theta = 90;\n", "\n", "#Calculations\n", "delta = (h*(1-cos(radians(theta))))/(m*c);\n", "Nlambda = lamda + delta;\n", "E = (h*c)*((1./lamda)-(1./Nlambda)) ;\n", "\n", "#Result\n", "print 'Energy of electron is %.2f *10^-16 J'%(E/1e-16)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of electron is 1.84 *10^-16 J\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9, Page 290" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "lamda = 1.5e-10; # Wavelength of light in meters\n", "E = 0.5e-16; # Energy of electron in J \n", "\n", "#Calculation\n", "Nlambda = ((h*c)/lamda)-E;#'Energy of scattered electron\n", "\n", "#Result\n", "print 'Energy of scattered electron is %.2f *10^-16 J'%(Nlambda/1e-16)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of scattered electron is 12.74 *10^-16 J\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.10, Page 290" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos,radians\n", "\n", "#Varaible declaration\n", "lamda=0.022*1e-10;#wavelength in meters\n", "th=45;#angle in degree\n", "m=9.1*1e-31;\n", "c=3*1e8;#velocity of light in free space\n", "h=6.62*1e-34;#planck's constant\n", "\n", "#Calculations&Results\n", "x=cos(th);\n", "dlamda=h*(1-cos(radians(th)))/(m*c);#delta lemda \n", "print 'delta lemda is= %.3f A'%(dlamda/1e-10)\n", "lamda1=lamda-dlamda;#wavelength of incident X-rays\n", "print 'wavelength of incident X-rays %.3f A'%(lamda1/1e-10)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "delta lemda is= 0.007 A\n", "wavelength of incident X-rays 0.015 A\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.11, Page 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "a = 1e-10 # Width of box in meter\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "n = 1; # Single electron\n", "\n", "#Calculation\n", "E = (n**2 * h**2)/(8*m*a**2*1.6e-19);\n", "\n", "#Result\n", "print'Energy of electrons is %.1f n^2 eV'%E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of electrons is 37.6 n^2 eV\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.12, Page 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "a = 1e-10 # Width of box in meter\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "n = 1; # Single electron\n", "\n", "#Calculations\n", "E = (h**2)/(8*m*a**2);#Energy of in lower level\n", "p = h/(2*a);#Momentum \n", "\n", "#Results\n", "print 'Energy of in lower level %.f *10^-18 J'%(E/1e-18)\n", "print'Momentum is %.2f *10^-24 (kg.m)/s'%(p/1e-24)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of in lower level 6 *10^-18 J\n", "Momentum is 3.31 *10^-24 (kg.m)/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.13, Page 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "a = 0.2e-9 # Width of box in meter\n", "m = 9.1e-31; # Mass of electron in kg\n", "h = 6.62e-34; # Planck's constant in Js\n", "c = 3e8; # Velocity of light in vaccum\n", "E5 = 230*1.6e-19 # Energy of a particle in Volts in 5th antinode\n", "n = 5;\n", "\n", "#Calculations\n", "E1 = E5/(n**2);\n", "m = (h**2)/(8*E1*a**2);#Mass of electron \n", "\n", "#Result\n", "print 'Mass of electron is %.2f *10^-31 kg'%(m/1e-31)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass of electron is 9.30 *10^-31 kg\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.14, Page 316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "n = 1; # Single particle\n", "a = 50e-10; # Width of box in meter\n", "deltax = 10e-10; # Intervel between particle\n", "\n", "#Calculations\n", "p = (2/a)*deltax;#The probability of finding the particle\n", "\n", "#Result\n", "print 'The probability of finding the particle is %.1f'%p\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The probability of finding the particle is 0.4\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.15, Page 316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Varaible declaration\n", "h = 6.62*1e-34; # Planck's constant\n", "m = 1e-9; # Mass of particle in kg\n", "t = 100; #Time reqired by the particle to cross 1 mm distance\n", "a = 1e-3 ; # Width of box in m\n", "v = 1e-5; # Velocity of particle in m/s\n", "\n", "#Calculations\n", "E = (0.5*m*v**2);\n", "n = sqrt(8*m*a**2*E/(h**2));#The quantum state\n", "\n", "#Result\n", "print 'The quantum state is %.f*10^16 '%(n/1e+16)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The quantum state is 3*10^16 \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.16, Page 317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Varaible declaration\n", "h = 6.62e-34; # Planck's constant in J.s\n", "m = 9.1e-31 # Mass of electron in kg\n", "nk =1;\n", "nl = 1;\n", "nm = 1;\n", "a = 0.5e-10 # Width of cubical box in meter\n", "\n", "#Calculation\n", "E = (h**2*(nk**2+nl**2+nm**2))/(8*m*a**2*1.6e-19);#The lowest energy level will have energy\n", "\n", "#Result\n", "print 'The lowest energy level will have energy %.f eV'%E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest energy level will have energy 451 eV\n" ] } ], "prompt_number": 16 } ], "metadata": {} } ] }