{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8:Conducting Materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1, Page 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "n = 5.8*1e28; # Electrons density in electrons per cube meter\n", "rho = 1.58*1e-8; #Resistivity of wire in ohm meter\n", "m = 9.1*1e-31; # Mass of electron \n", "e = 1.6*1e-19; # Charge of electron in coloumb\n", "E = 1e2; # Electric field\n", "\n", "#Calculations\n", "t = round((m/(rho*n*e**2))/1e-14);\n", "u = (e*t*10**-14)/m;\n", "v = u*E; \n", "\n", "#Results\n", "print 'The relaxation time is ',t,'*10^-14 s'\n", "print 'The mobility of electrons ',round(u/1e-3,2),'*10^-3 m^2/volt sec'\n", "print 'The average drift velocity for an electric field of 1V/cm is ',round(v,3),'m/s'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relaxation time is 4.0 *10^-14 s\n", "The mobility of electrons 7.03 *10^-3 m^2/volt sec\n", "The average drift velocity for an electric field of 1V/cm is 0.703 m/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2, Page 267" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable declaration\n", "e = 1.6*1e-19; # Charge on electron in coulumb\n", "m = 9.1*1e-31; # Mass of electron in kg \n", "rho = 1.54*1e-8; #Resistivity of material at room temperature in ohm . meter\n", "n = 5.8*1e28; # Number of electrons per cubic meter\n", "Ef = 5.5; # The fermi energy of the conductor in eV\n", "\n", "#Calculations\n", "vf = sqrt((2*Ef*e)/m);\n", "t = (m/(n*e**2*rho));\n", "MFP = vf*t;\n", "\n", "#Results\n", "print 'Velocity of electron is',round(vf/1e6,2),'*10^6 m/s'\n", "print 'Mean free path of electron is',round(MFP/1e-8,2),'*10^-8 m'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of electron is 1.39 *10^6 m/s\n", "Mean free path of electron is 5.53 *10^-8 m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3, Page 267" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m = 9.1*1e-31; #Mass of electron in kg\n", "e = 1.6*1e-19; # Charge on electron in coulumb\n", "t = 3*1e-14; # Relaxation time in seconds\n", "n = 5.8*1e28; #Number of electrons in cubic meter\n", "\n", "#Calculations\n", "rho =m/(n*t*e*e);#The resistivity of metal \n", "u = 1/(n*e*rho);#The mobility of electron \n", "\n", "#Result\n", "print 'The resistivity of metal is',round(rho/1e-8,2),'*10^-8 Ohm.meter' #incorrect answer in textbook\n", "print 'The mobility of electron is',round(u/1e-3,2),'*10^-3 sqaure meter per volt.second' \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistivity of metal is 2.04 *10^-8 Ohm.meter\n", "The mobility of electron is 5.27 *10^-3 sqaure meter per volt.second\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4, Page 268" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable declaration\n", "e = 1.6*1e-19; # Charge of electrons in coloumbs\n", "m = 9.1*1e-31; # Mass of electrons in Kg\n", "Ef = 7*e ; #Fermi energy in electrons volt\n", "t = 3*1e-14; # Relaxation time in seconds\n", "\n", "#Calculations\n", "vf = sqrt(Ef*2/m);\n", "lamda = vf*t;#The mean free path of electrons \n", "\n", "#Result\n", "print 'The mean free path of electrons is',round(lamda/1e-10),'A'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mean free path of electrons is 471.0 A\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5, Page 268" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "rhoC = 1.65*1e-8; # Electrical resistivity of cpooer in ohm meter\n", "rhoN = 14*1e-8; # Electrical resistivity of Nickel in ohm meter\n", "T = 300; # Room temperature in kelvin\n", "\n", "#Calculations\n", "KCu =(2.45*1e-8*T)/rhoC;#Thermal conductivity of Cu\n", "KNi =2.45*1e-8*T/rhoN;#Thermal conductivity of Ni\n", "\n", "#Results\n", "print 'Thermal conductivity of Cu is ',round(KCu),'W/(m*degree)' #incorrect answer in textbook\n", "print 'Thermal conductivity of Ni is ',KNi,'W/(m*degree)'\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thermal conductivity of Cu is 445.0 W/(m*degree)\n", "Thermal conductivity of Ni is 52.5 W/(m*degree)\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }