{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: Optical Fibre Communication" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1, Page 206" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable declaration\n", "NA = 0.24;#Numerical Aperture\n", "delta = 0.014;\n", "\n", "#Calculations & Results\n", "n1 = (NA)/sqrt(2*delta);#Refractive index of first medium \n", "print 'Refractive index of first medium is ',round(n1,4)\n", "n2 = n1 - (delta*n1);#Refractive index of secong material\n", "print 'Refractive index of secong material is ',round(n2,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Refractive index of first medium is 1.4343\n", "Refractive index of secong material is 1.4142\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2, Page 207" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,asin,degrees\n", "\n", "#Variable declaration\n", "n1 = 1.49; # Refractive index of first medium\n", "n2 = 1.44; # Refractive index of second medium\n", "\n", "#Calculations & Results\n", "def deg_to_dms(deg):\n", " d = int(deg)\n", " md = abs(deg - d) * 60\n", " m = int(md)\n", " sd = (md - m) * 60\n", " sd=round(sd,2)\n", " return [d, m, sd]\n", "\n", "delta = (n1-n2)/n1; # Index difference\n", "NA = n1* sqrt(2*delta);\n", "print 'Numerical Aperture of fiber is',round(NA,3)\n", "theta = degrees(asin(NA));\n", "print 'Acceptance angle is ',deg_to_dms(theta),'degrees'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical Aperture of fiber is 0.386\n", "Acceptance angle is [22, 42, 22.17] degrees\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3, Page 207" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,asin,degrees\n", "\n", "#Variable declaration\n", "NA = 0.15 ; # Numerical Aperture of fiber\n", "n2 = 1.55; # Refractive index of cladding\n", "n0w = 1.33; # Refractive index of water\n", "n0a = 1; # Refractive index of air\n", "\n", "#Calculations\n", "def deg_to_dms(deg):\n", " d = int(deg)\n", " md = abs(deg - d) * 60\n", " m = int(md)\n", " sd = (md - m) * 60\n", " sd=round(sd,2)\n", " return [d, m, sd]\n", "\n", "n1 = sqrt(NA**2 + n2**2);\n", "NAW = (sqrt(n1**2 -n2**2))/n0w;\n", "theta = degrees(asin(NAW));#Acceptance angle in water\n", "\n", "#Result\n", "print 'Acceptance angle in water is ',deg_to_dms(theta),'degrees'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acceptance angle in water is [6, 28, 32.55] degrees\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4, Page 216" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log10\n", "\n", "#Variable declaration\n", "l = 16; # Length of optical fiber in Km\n", "Pi = 240e-6; # Mean optical length launched in optical fiber in Watts\n", "Po = 6e-6; # Mean optical power at the output in watts\n", "\n", "#Calculations&Results\n", "alpha = 10*log10(Pi/Po);#Signal attenuation in fiber\n", "print 'Signal attenuation in fiber',round(alpha),'dB'\n", "alpha1 = alpha/l;#Signal attenuation per km of the fiber\n", "print 'Signal attenuation per km of the fiber',round(alpha1),'dB/km'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Signal attenuation in fiber 16.0 dB\n", "Signal attenuation per km of the fiber 1.0 dB/km\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.5, Page 219" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi,exp\n", "\n", "#Variable declaration\n", "Tf = 1400; # Fictive temperature of silicon in Kelvin\n", "betai = 7e-11; # Isothermal compressibility square meter per newton\n", "n = 1.46; # Refractive index of silicon\n", "p = 0.286; # Photoelastic constant of silicon\n", "lamda = 0.63e-6 # Wavelength in micrometer\n", "kb = 1.38e-23 # Boltzmann constant in joule per kelvin\n", "L = 1e3;\n", "\n", "#Calculations\n", "alphas = (8 * pi**3 * n**8 * p**2 * kb * Tf * betai)/(3 * lamda**4);#Rayleigh scattering coefficient\n", "alphars = exp(-alphas * L);#Loss factor\n", "\n", "#Results\n", "print 'Rayleigh scattering coefficient is ',round(alphas/1e-3,2),'*10^-3 /m'\n", "print 'Loss factor is',round(alphars,3) #Answer varies due to rounding-off values\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rayleigh scattering coefficient is 1.2 *10^-3 /m\n", "Loss factor is 0.302\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.6, Page 222" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "alpha = 0.5; # Attenuation of single mode optical fibre in dB per km\n", "lamda = 1.4; # Operating wavelength of optical fiber in micrometer\n", "d = 8 # Diameter of fiber in micrometer\n", "y = 0.6; # Laser source frequency width\n", "\n", "#Calculations\n", "pb = 4.4e-3 * d**2 * lamda**2 * alpha * y;#Threshold optical power in SBS\n", "prs = 5.9e-2 * d**2 * lamda * alpha;#Threshold optical power in SRS\n", "\n", "#Results\n", "print 'Threshold optical power in SBS',pb/1e-3,'mW'\n", "print 'Threshold optical power in SRS',prs,'W'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Threshold optical power in SBS 165.5808 mW\n", "Threshold optical power in SRS 2.6432 W\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7, Page 225" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "\n", "#Variable declaration\n", "n1 = 1.50; # Refreactive index of forst medium\n", "delta = 0.003; # Index difference\n", "lamda = 1.6*1e-6; # Operating wavelength of fober in meter\n", "\n", "#Calculations&Results\n", "n2 = sqrt(n1**2-(2*delta*n1**2));#refractive index of cladding\n", "#Substituting n2^2 = n1^2 - 2*delta*n1^2 in euation of Rc,\n", "rc = (3*n1**2*lamda)/(4*pi*((2*delta*n1**2)**(3./2)));#The critical radius of curvature for which bending losses occur \n", "print 'The critical radius of curvature for which bending losses occur is ',round(rc/1e-6,2),'um'\n", "#Incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The critical radius of curvature for which bending losses occur is 547.92 um\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }