{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4: Crystal Physics " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1, Page 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "r=1.278*1e-8 ;#atomic radius in cm\n", "M=63.5; #atomic weight\n", "N=6.023*1e23; #avogadro number\n", "n=4#for fcc n=4\n", "\n", "#Calculations\n", "a=4*r/(sqrt(2));\n", "density=n*M/(N*a**3);#Density of copper\n", "\n", "#Result\n", "print 'Density of copper =',round(density,1),'g/cc'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density of copper = 8.9 g/cc\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2, Page 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "M=58.45;#atomic mass\n", "N=6.02*1e23;#avogadro number\n", "density=2.17*1e3 ; #in kg/m^3\n", "n=4 #Nacl is FCC\n", "\n", "#Calculation\n", "a=(n*M/(N*density))**(1./3);#lattice constant\n", "\n", "#Result\n", "print 'lattice constant = ',round(a/1e-10,2),'A'\n", "#incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lattice constant = 56.35 A\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3, Page 126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "#let three intercepts are I1,I2,I3\n", "I1=3;\n", "I2=-2;\n", "I3=3./2;\n", "#let their reciprocals are I1_1,I2_1,I3_1\n", "I1_1=1./I1;\n", "I2_1=1./I2;\n", "I3_1=1./I3;\n", "\n", "#Calculations\n", "#LCM of I1_1,I2_1,I3_1 are 6 . \n", "#By multiply LCM with I1_1,I2_1,I3_1 we will get miller indices\n", "LCM=6;\n", "M_1=LCM*I1_1;\n", "M_2=LCM*I2_1 ;\n", "M_3=LCM*I3_1;\n", "\n", "#Results\n", "print 'Miller indices of plane are [',M_1,\n", "print(M_2),\n", "print(M_3),']'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Miller indices of plane are [ 2.0 -3.0 4.0 ]\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4, Page 126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "r=1.246 #in A\n", "\n", "#Calculations & Results\n", "a=4*r/sqrt(2)\n", "d_200=a/sqrt(2**2+0**2+0**2)\n", "print 'd200 = ',round(d_200,2),'A'\n", "d_220=a/sqrt(2**2+2**2+0**2)\n", "print 'd220 = ',d_220,'A'\n", "d_111=a/sqrt(1**2+1**2+1**2)\n", "print 'd111 = ',round(d_111,2),'A'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "d200 = 1.76 A\n", "d220 = 1.246 A\n", "d111 = 2.03 A\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5, Page 127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import acos,degrees\n", "\n", "#Variable Declaration\n", "h=1\n", "k=1\n", "l=1\n", "h1=1\n", "k1=1\n", "l1=1\n", "\n", "#Calculations\n", "a=((h*h1)-(k*k1)+(l*l1))/(sqrt((h*h)+(k*k)+(l*l))*sqrt((h1*h1)+(k1*k1)+(l1*l1)));\n", "#cosine angle=a so angle=cosine inverse of a\n", "theta=degrees(acos(a));#angle between two planes\n", "\n", "#Result\n", "print 'angle between two planes =',round(theta,2),'degrees'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "angle between two planes = 70.53 degrees\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6, Page 127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "a=2.9*1e-8; #in cm\n", "M=55.85;#atomic mass\n", "density=7.87 #in g/cc\n", "N=6.023*1e23;\n", "\n", "#Calculations\n", "n=(a**3*N*density)/M;#Number of atoms per unit cell\n", "\n", "#Result\n", "print 'Number of atoms per unit cell =',round(n,3)\n", "#Incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of atoms per unit cell = 2.07\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7, Page 127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "M=55.85;#atomic mass\n", "d=7.86 #density of iron in g/cc\n", "N=6.023*1e23\n", "n=2#BCC structure\n", "\n", "#Calculations\n", "a=((n*M)/(N*d))**(1./3);\n", "r=(sqrt(3)*a)/4;#radius of iron atom \n", "\n", "#Result\n", "print 'radius of iron atom =',round(r/1e-10,3),'A'\n", "#Incorrect answer in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "radius of iron atom = 124.196 A\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.8, Page 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "M=207.21;#atomic mass\n", "d=11.34*1e3 #in kg/m^3\n", "N=6.023*1e26 #in kg/m^3\n", "n=4;#for FCC\n", "\n", "#Calculations\n", "a=((n*M)/(N*d))**(1./3);#lattice constant\n", "r=(sqrt(2)*a)/4;#Atomic radius\n", "\n", "#Result\n", "print 'lattice constant =',round(a/1e-10,2),'A'\n", "print 'Atomic radius =',round(r/1e-10,2),'A'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lattice constant = 4.95 A\n", "Atomic radius = 1.75 A\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9, Page 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,sin,degrees,radians,pi\n", "\n", "#Variable Declaration\n", "n=1;\n", "theta=30;#angle in degree\n", "lamda=1.75; #in A\n", "h=1;\n", "k=1;\n", "l=1;\n", "\n", "#Calculations\n", "#d111=a/sqrt((h*h)+(k*k)+(l*l))\n", "#2dsin(thita)=n*lamda\n", "d=n*lamda/(2*sin(theta*pi/180))\n", "a=sqrt(3)*d;#lattice constant \n", "\n", "#Result\n", "print \"lattice constant =\",round(a,3),'A'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lattice constant = 3.031 A\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.10, Page 129" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "#let three intercepts are I1,I2,I3\n", "I1=0.96;\n", "I2=0.64;\n", "I3=0.48;\n", "\n", "#Calculations\n", "#as they are ratios we will multiply by some some constants so that it will become integers\n", "I1=6;\n", "I2=4;\n", "I3=3 ;\n", "#let their reciprocals are I1_1,I2_1,I3_1\n", "I1_1=1./I1;\n", "I2_1=1./I2;\n", "I3_1=1./I3;\n", "#LCM of I1_1,I2_1,I3_1 are 12. \n", "#By multiply LCM with I1_!,I2_1,I3_1 we will get miller indices\n", "LCM=12;\n", "M_1=LCM*I1_1;\n", "M_2=LCM*I2_1 ;\n", "M_3=LCM*I3_1;\n", "\n", "#Results\n", "print 'Miller indices of plane are [',M_1,\n", "print(M_2),\n", "print(M_3),']'\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Miller indices of plane are [ 2.0 3.0 4.0 ]\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }