{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12: Superconductivity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1, Page 373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "\n", "#Variable declaration\n", "Tc=7.26;#critical tempreture in kelvin\n", "H0=8*1e5/(4*pi);#magnetic field at 0K\n", "T=5;#tempreture in kelvin\n", "\n", "#Calculation\n", "Hc=H0*(1-(T/Tc)**2);#megnrtic field at 5K\n", "\n", "#Result\n", "print 'magnrtic field at 5K tempreture =%.2f*10^4 A/m'%(Hc/1e4)\n", "#Incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "magnrtic field at 5K tempreture =3.35*10^4 A/m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2, Page 373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable declaration\n", "Tc=0.3;#given tempareture in kelvin\n", "thetad=300;\n", "\n", "#Calculations&Results\n", "#part a\n", "N0g=-1./(log(Tc/thetad));\n", "print 'the value of N0g is %.2f'%N0g\n", "#part b\n", "kB=1.38*1e-23;#boltzmann constant\n", "Eg=3.5*kB*Tc;#energy\n", "print 'energy is= %.2f*10^-23 J'%(Eg/1e-23)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the value of N0g is 0.14\n", "energy is= 1.45*10^-23 J\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.3, Page 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "H0=0.0306;#given constant characteristic of lead material\n", "Tc=3.7;#given tempareture in kelvin\n", "T=2;#given tempareture in kelvin\n", "\n", "#Calculations\n", "x=(T/Tc)*(T/Tc);\n", "Hc=H0*(1-x);#value of magnetic field at 2K temp\n", "\n", "#Result\n", "print 'value of magnetic field at 2K temp = %.4f T'%Hc\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of magnetic field at 2K temp = 0.0217 T\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4, Page 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable declaration\n", "HcT=2*1e5/(4*pi);#magnetic field intensity at T K\n", "Hc0=3*1e5/(4*pi);#magnetic field intensity at T=0K\n", "Tc=3.69;#given temperature in K\n", "\n", "#Calculation\n", "T=sqrt(1-(HcT/Hc0))*Tc;#tempreture in K\n", "\n", "#Result\n", "print 'temperature of superconducture is= %.2f K'%T\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "temperature of superconducture is= 2.13 K\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.5, Page 374" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "\n", "#Variable declaration\n", "H0=6.5*1e4;#given constant characteristic of lead material\n", "Tc=7.18;#given temprature in kelvin\n", "T=4.2;#given temprature in kelvin\n", "\n", "#Calculations&Results\n", "#part a\n", "x=(T/Tc)*(T/Tc);\n", "Hc=H0*(1-x);#value of magnetic field at 4.2K temp\n", "print 'value of magnetic field at 4.2K temp= %.2f*10^4 A/M'%(Hc/1e4)\n", "#part b\n", "r=1e-3;#given radius\n", "Ic=2*pi*r*Hc;#critical current\n", "print 'critical current is = %.1f A'%Ic #Incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "value of magnetic field at 4.2K temp= 4.28*10^4 A/M\n", "critical current is = 268.7 A\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.6, Page 375" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable declaration\n", "lemdaT=750;#given penetration depth at T=3.5K\n", "Tc=4.22;#given critical tempreture\n", "T=3.5;##given temperature\n", "\n", "#Calculations&Results\n", "#part a\n", "x=(T/Tc)**4;#temporary variable\n", "lemda0=lemdaT/sqrt(1-x);#penetration depth at T=0K\n", "print 'penetration depth at T=0K is %.fA'%lemda0\n", "#part b\n", "N=6.02*1e26;#given\n", "alpha=13.55*1e3;#given\n", "M=200.6;#given\n", "n0=N*alpha/M;\n", "print 'molecular density = %.3f*10^28 /m^3'%(n0/1e28)\n", "ns=n0*(1-(T/Tc)**4);#superconducting electron density\n", "print 'superconducting electron density = %.3f*10^28 /m^3'%(ns/1e28)#Answer differs due to rounding-off values\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "penetration depth at T=0K is 1033A\n", "molecular density = 4.066*10^28 /m^3\n", "superconducting electron density = 2.142*10^28 /m^3\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }