{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11: Semiconductors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1, Page 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "Pi=0.47;#given resistivity of intrinsic germanium\n", "sigmai=1/Pi;#conductance\n", "e=1.6*1e-19;#charge of electron\n", "ue=0.38;#electron mobility\n", "up=0.18;#hole mobility\n", "\n", "#Calculation\n", "ni=sigmai/(e*(ue+up));#intrinsic carrier density at 300K \n", "\n", "#Result\n", "print 'intrinsic carrier density at 300K temp= %.2f*10^19 m^-3'%(ni/1e+19)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intrinsic carrier density at 300K temp= 2.37*10^19 m^-3\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2, Page 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "e=1.6*1e-19;#charge of electron\n", "ue=0.39;#electron mobility\n", "up=0.19;#hole mobility\n", "ni=2.4*1e19;#intrinsic carrier density \n", "\n", "#calculation\n", "sigma=ni*e*(up+ue);\n", "\n", "#Result\n", "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductivity of intrinsic semiconductor= 2.23 ohm^-1*m^-1\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3, Page 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi,exp\n", "\n", "#Variable Declaration\n", "m0=9.1*1e-31;\n", "me=0.12*m0;\n", "mp=0.28*m0;\n", "Eg=0.67*1.6*1e-19\n", "k=1.38*1e-23;#boltzman constant\n", "h=6.62*1e-34;#plank's constant\n", "T=300;\n", "\n", "#Calculations\n", "ni=2*((2*pi*k*T/h**2)**(3./2))*((me*mp)**(3./4))*exp(-Eg/(2*k*T));#intrinsic carrier concentration\n", "\n", "#Result\n", "print 'intrinsic carrier concentration is= %.1f *10^18 m^-3'%(ni/1e18)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "intrinsic carrier concentration is= 4.7 *10^18 m^-3\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4, Page 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "Eg1=0.36*1.6*1e-19;\n", "Eg2=0.72*1.6*1e-19\n", "k=1.38*1e-23;#boltzman constant\n", "T=300;#tempreture in kelvin\n", "\n", "#Calculation\n", "#in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n", "x=exp((Eg2-Eg1)/(2*k*T));#ratio of nip/niq\n", "\n", "#Result\n", "print 'ratio of nip/niq is= %.f '%x\n", "#Incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio of nip/niq is= 1050 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.5, Page 344" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "e=1.6*1e-19;#charge of electron\n", "ue=0.39;#electron mobility\n", "up=0.19;#hole mobility\n", "ni=2.5*1e19;#intrinsic carrier density \n", "l=1e-2;#length of Ge rode\n", "a=1e-4;#area of Ge rode\n", "\n", "#Calculations&Results\n", "sigma=ni*e*(up+ue);#conductivity of intrinsic semiconductor\n", "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma\n", "P=1/sigma;\n", "R=P*l/a;#resistance of Ge rode\n", "print 'resistance of Ge rode =%.1f ohm'%R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "conductivity of intrinsic semiconductor= 2.32 ohm^-1*m^-1\n", "resistance of Ge rode =43.1 ohm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.6, Page 347" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "ue=3850;#mobility of electron\n", "sigma=5;#conductivity of ntype semiconductor\n", "e=1.6*1e-19;#charge of electron\n", "\n", "#Calculation\n", "Nd=sigma/(e*ue);#density of donor atoms\n", "\n", "#Result\n", "print 'density of donor atoms is= %.2f*10^16 cm^-3'%(Nd/1e16)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "density of donor atoms is= 0.81*10^16 cm^-3\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.7, Page 351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable Declaration\n", "#let Ef-Ev=0.4eV=x and Ef1-Ev=y\n", "x=0.4;#Ef-Ev in eV\n", "k=1.38*1e-23;#boltzmann constant\n", "T=300;#tempreture in kelvin\n", "\n", "#Calculations\n", "#now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n", "y=x-((k*T*log(2))/1.6e-19);#Ef1-Ev in eV\n", "\n", "#Result\n", "print 'Ef1-Ev in eV is= %.4feV'%y\n", "#Answer varies due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ef1-Ev in eV is= 0.3821eV\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.8, Page 352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "#let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n", "x=0.3;#Ec-Ef in eV\n", "T1=300.;#tempreture in kelvin\n", "T2=330.;#tempreture in kelvin\n", "\n", "#Calculation\n", "#Ec-Ef=k*T*log(Nc/Nd) so..\n", "y=T2*x/T1;#Ec2-Ef in eV\n", "\n", "#Result\n", "print 'Ec2-Ef in eV is= %.2f eV'%y\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ec2-Ef in eV is= 0.33 eV\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.9, Page 356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "B=0.5;#given flux density\n", "d=3*1e-3;#given thickness\n", "J=500.;#given current density\n", "n=1e21;#given donor density\n", "e=1.6*1e-19;#charge of electron\n", "\n", "#Calculation\n", "Vh=(B*J*d)/(n*e);#hall voltage\n", "\n", "#Result\n", "print 'hall voltage is= %.1f mV'%(Vh/1e-3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hall voltage is= 4.7 mV\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.10, Page 357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "\n", "#Variable Declaration\n", "P=8.9*1e-3;#resistivity of doped sillicon\n", "Rh=3.6*1e-4;#hall coefficient\n", "e=1.6*1e-19;#charge of electron\n", "\n", "#Calculations&Results\n", "ne=(3*pi)/(8*Rh*e);#carrier density of electron\n", "print 'carrier density of electrons = %.3f*10^22 m^-3'%(ne/1e22)\n", "ue=1./(P*ne*e);#mobility of electon\n", "print 'mobility of charges = %.4f m^2*V^-1*s^-1'%ue\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "carrier density of electrons = 2.045*10^22 m^-3\n", "mobility of charges = 0.0343 m^2*V^-1*s^-1\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }