{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#8: Quantum Physics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.1, Page number 204" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The energy of photon is 12412.5 eV\n", "The momentum of the photon is 6.62e-24 Kg m s^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "W=0.1*10**-9; #wavelength of photon(m)\n", "h=6.62*10**-34; #Planck's constant(m^2 Kg/sec)\n", "c=3*10**8; #velocity of light(m/s)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "E=h*c/(W*e); #energy of photon(eV)\n", "P=h/W; #momentum of the photon(Kgms^-1)\n", "\n", "#Result\n", "print \"The energy of photon is\",E,\"eV\"\n", "print \"The momentum of the photon is\",P,\"Kg m s^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.2, Page number 205" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The total number of photons emitted per second is 2.965 *10**20 per sec\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "w=5893*10**-10; #wavelength of emitted light(m)\n", "e=100; #total energy emitted per sec\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "c=3*10**8; #velocity of light(m/s)\n", "\n", "#Calculation\n", "E=h*c/w; #energy of one photon(J)\n", "N=e/E; #The total numberof photons emitted(sec)\n", "\n", "#Result\n", "print \"The total number of photons emitted per second is\",round(N/10**20,3),\"*10**20 per sec\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.3, Page number 205" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The energy density per unit wavelength in a black body cavity is 0.018349 J/m^4\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "w=4000*10**-10; #wavelength in black body(m)\n", "t=1500; #temperature of black body(K)\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "c=3*10**8; #velocity of light(m/s)\n", "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n", "\n", "#Calculation\n", "Edw=(8*math.pi*h*c/w**5)*(1/(math.exp(h*c/(w*Kb*t))-1)); #The energy density per unit wavelength in a black body cavity(J/m^4)\n", "\n", "#Result\n", "print \"The energy density per unit wavelength in a black body cavity is\",round(Edw,6),\"J/m^4\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.4, Page number 211" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The compton wavelength for an electron is 0.0242 Angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "c=3*10**8; #velocity of light(m/s)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "\n", "#Calculation\n", "w=h/(c*m)*10**10; #The compton wavelength for an electron(Armstrong)\n", "\n", "#Result\n", "print \"The compton wavelength for an electron is\",round(w,4),\"Angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.5, Page number 212" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The change in wavelength for X ray photon is 0.0242 Angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "theta=90; #x ray photon scattered at a angle(degrees)\n", "h=6.625*10**-34; #Planck's constant(J-sec)\n", "c=3*10**8; #velocity of light(m/s)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "\n", "#Calculation\n", "theta=theta*math.pi/180; #angle(radian)\n", "deltalamda=((h/(c*m))*(1-math.cos(x)))/10**-10; #The change in wavelength for Xray photon(Angstrom)\n", "\n", "#Result\n", "print \"The change in wavelength for X ray photon is\",round(deltalamda,4),\"Angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.6, Page number 212" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The wavelength of X-rays carbon is 1.72 Angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "theta=180; #x ray carbon scattered at a angle(degrees)\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "c=3*10**8; #velocity of light(m/s)\n", "m=9.11*10**-31; #mass of electron(kg)\n", "v=1.8*10**18; #frequency of incident rays(s^-1)\n", "\n", "#Calculation\n", "theta=theta*math.pi/180; #angle(radian)\n", "w=c/v; #wavelength(m)\n", "tw=(h/(c*m))*(1-math.cos(theta)); #The change wavelength for Xray carbon(m)\n", "lamda_dash=(w+tw)/10**-10; #The wavelength of X-rays carbon(Angstrom)\n", "\n", "#Result\n", "print \"The wavelength of X-rays carbon is\",round(lamda_dash,2),\"Angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.7, Page number 212" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The wavelength of scattered photons is 3.012 Angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "w=3*10**-10; #wavelength of incident photons(m)\n", "theta=60; #angle of view(degrees)\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "c=3*10**8; #velocity of light(m/sec)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "\n", "#Calculation\n", "theta=theta*math.pi/180; #angle(radian)\n", "lamda_dash=(w+((h/(c*m))*(1-math.cos(theta))))/10**-10; #The wavelength of scattered photons(Angstrom)\n", "\n", "#Result\n", "print \"The wavelength of scattered photons is\",round(lamda_dash,3),\"Angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.8, Page number 213" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Velocity of moving electron is 2.9047 *10**8 m/sec\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "x=4; #Total energy increase to 4 times of its initial rest energy\n", "c=3*10**8; #velocity of light(m/sec)\n", "\n", "#Calculation\n", "v=math.sqrt(c**2*(1-(1/x**2))); #The Velocity of moving electron(m/sec)\n", "\n", "#Result\n", "print \"The Velocity of moving electron is\",round(v/10**8,4),\"*10**8 m/sec\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.9, Page number 224" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The least energy of the particle can be obtained is 37.639 eV\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=0.1*10**-9; #width of high potential box(m)\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "e=1.6*10**-19; #charge of electron(c)\n", "n=1; #take n equal to one\n", "\n", "#Calculation\n", "E=(n**2*h**2)/(8*m*a**2*e); #The least energy of the particle can be obtained(eV)\n", "\n", "#Result\n", "print \"The least energy of the particle can be obtained is\",round(E,3),\"eV\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.10, Page number 224" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The least energy of the neutron can be obtained is 2.053 MeV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=10**-14; #length of impenerable box(m)\n", "m=1.67*10**-27; #mass of neutron(Kg)\n", "n=1; #for lowest energy\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "\n", "#Calculation\n", "E=(n**2*h**2)/(8*m*a**2); #The least energy of the neutron can be obtained(J)\n", "\n", "#Result\n", "print \"The least energy of the neutron can be obtained is\",round(E/(1.6*10**-19*10**6),3),\"MeV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.11, Page number 225" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The first permitted energy level by taking n=1 is 2.352 eV\n", "The second permitted energy level by taking n=2 is 9.41 eV\n", "The third permitted energy level by taking n=3 is 21.172 eV\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=4*10**-10; #width of electron box(m)\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "m=9.11*10**-31; #mass of electron(kg)\n", "e=1.6*10**-19; #charge of electron(c)\n", "n=1; #first permitted level\n", "\n", "#Calculation\n", "E1=((n**2*h**2)/(8*m*a**2*e)); #The first permitted energy level by taking n=1(eV)\n", "E2=4*E1; #The second permitted energy level by taking n=2(eV)\n", "E3=9*E1; #The third permitted energy level by taking n=3(eV)\n", "\n", "#Result\n", "print \"The first permitted energy level by taking n=1 is\",round(E1,3),\"eV\"\n", "print \"The second permitted energy level by taking n=2 is\",round(E2,2),\"eV\"\n", "print \"The third permitted energy level by taking n=3 is\",round(E3,3),\"eV\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.12, Page number 226" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The lowest energy of electron in a cubical box is 50.186 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=1.5*10**-10; #each side of cubical box(m)\n", "n1=1; #for lowest energy\n", "n2=1; #for lowest energy\n", "n3=1; #for lowest energy\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "n=(n1**2+n2**2+n3**2); #total value of n\n", "E=((n*h**2)/(8*m*a**2*e)); #The lowest energy of electron ina cubical box(eV)\n", "\n", "#Result\n", "print \"The lowest energy of electron in a cubical box is\",round(E,3),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.13, Page number 226" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The lowest energy of electron in deep potential well is 0.02352 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=4*10**-9; #width of potential well(m)\n", "n=1; #For minimum energy n value\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "E=((n**2*h**2)/(8*m*a**2*e)); #The lowest energy of electron in deep potential well(eV)\n", "\n", "#Result\n", "print \"The lowest energy of electron in deep potential well is\",round(E,5),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.14, Page number 227" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The energy required the electron from its ground state to the fifth exited state is 1317 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=0.1*10**-9; #length of one dimensional box(m)\n", "n=1; #first permitted level\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "m=9.11*10**-31; #mass of electron(kg)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "E1=((n**2*h**2)/(8*m*a**2*e)); #The ground state of electron in an one dimensional box(eV)\n", "E6=36*E1; #The fifth exited state of electron(eV)\n", "E=E6-E1; #The energy required the electron from its ground state to the fifth exited state(eV)\n", "\n", "#Result\n", "print \"The energy required the electron from its ground state to the fifth exited state is\",int(E),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 8.15, Page number 227" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The lowest energy of the system consisting of three electron ia a one dimensional box is 112.9184 eV\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=0.1*10**-9; #length of one dimensional box(m)\n", "n=1; #first permitted level\n", "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n", "m=9.11*10**-31; #mass of electron(Kg)\n", "e=1.6*10**-19; #charge of electron(c)\n", "ne=3; #the number of electrons\n", "\n", "#Calculation\n", "E=((n**2*h**2)/(8*m*a**2*e))*ne; #The lowest energy of the system consisting of three electron ia a one dimensional box(eV)\n", "\n", "#Result\n", "print \"The lowest energy of the system consisting of three electron ia a one dimensional box is\",round(E,4),\"eV\"\n", "print \"answer varies due to rounding off errors\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }