{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#7: Conducting Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.1, Page number 178" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current density in the conductor corresponds to a drift velocity is 5.9 *10**9 A m^-1\n", "Mobility of the charge carrires is 6.58898 *10**-3 m^2 V^-1 s^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=5.9*10**28; #electron concentration of conductor(m^-3)\n", "v=0.625; #drift velocity of a conductor(ms^-1)\n", "x=6.22*10**7; #electrical conductivity(ohm^-1 m^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "J=n*e*v; #current density in the conductor corresponds to drift velocity(Am^-1)\n", "z=x/(n*e); #mobility of the charge(m^2V^-1s^-1)\n", " \n", "#Result\n", "print \"The current density in the conductor corresponds to a drift velocity is\",J/10**9,\"*10**9 A m^-1\"\n", "print \"Mobility of the charge carrires is\",round(z*10**3,5),\"*10**-3 m^2 V^-1 s^-1\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.2, Page number 179" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The drift velocity of free electron in a copper wire is 7.0028 *10**-5 ms^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=8.5*10**28; #density of free electrons in copper(m^-3)\n", "A=1.05*10**-6; #sectional area of copper(m^2)\n", "e=1.6*10**-19; #charge of electron(c)\n", "I=1; #copper wire carries a current(A)\n", "\n", "#Calculation\n", "V=1/(A*n*e); #drift velocity of free electrons in copper wire(ms^-1)\n", "\n", "#Result\n", "print \"The drift velocity of free electron in a copper wire is\",round(V*10**5,4),\"*10**-5 ms^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.3, Page number 179" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The drift velocity of free electrons in copper is 1.75 *10**-3 ms^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "X=3.5*10**-3; #mobility of free electrons in copper(m^2 V^-1 s^-1)\n", "E=0.5; #elactric field strength of copper(V m^-1)\n", "\n", "#Calculation\n", "V=X*E; #drift velocity of free electrons in copper(m s^-1)\n", "\n", "#Result\n", "print \"The drift velocity of free electrons in copper is\",V*10**3,\"*10**-3 ms^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.4, Page number 179" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The relaxation time of conduction electrons is 3.815 *10**-14 s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "n=6.5*10**28; #conduction electron(m^-3)\n", "r=1.435*10**-8; #metal resistivity(ohm-metre)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.11*10**-31; #mass of a electron(kg)\n", "\n", "#Calculation\n", "T=m/(r*n*e**2); #relaxation time of conduction electrons(s)\n", "\n", "#Result\n", "print \"The relaxation time of conduction electrons is\",round(T*10**14,3),\"*10**-14 s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.5, Page number 180" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The mean free path between collision of free electrons in copper is 2.8153 *10**-9 m\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r=1.72*10**-8; #resistivity of copper(ohm metre)\n", "T=293; #temperature of copper(K)\n", "n=8.48*10**28; #density of free electron(m^-3)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.11*10**-31; #mass of a electron(kg)\n", "k=1.38*10**-23; #boltzmann constant(m^2 Kg s^-2 k^-1)\n", "\n", "#Calculation\n", "t=m/(r*n*(e**2)); #relaxation time(s)\n", "v=math.sqrt(3*k*T/m); #thermal velocity(ms^-1)\n", "Lamda=t*v; #mean free path between collision of free electrons in copper(m)\n", "\n", "#Result\n", "print \"The mean free path between collision of free electrons in copper is\",round(Lamda*10**9,4),\"*10**-9 m\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.6, Page number 180" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thermal velocity is 116.76 *10**3 m s^-1\n", "Drift velocity of electrons is 40.0 m s^-1\n", "Thus the terminal velocity is high compared to the drift velocity\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "t=1*10**-3; #thickness of metal(m)\n", "V=1; #potential difference applied in volts(V)\n", "T=300; #temperature(K)\n", "m=0.04; #mobility(m^2 V^-1 s^-1)\n", "k=1.38*10**-23; #boltzmann constant(m^2 Kg s^-2 k^-1)\n", "m1=9.11*10**-31; #mass of a electron(kg)\n", "\n", "#Calculation\n", "v=math.sqrt(3*k*T/m1); #thermal velocity(ms^-1)\n", "E=V/t; #unit potenyial voltage gradient(V m^-1)\n", "vd=E*m; #drift velocity of electrons(m s^-1)\n", "\n", "#Result\n", "print \"The thermal velocity is\",round(v/10**3,2),\"*10**3 m s^-1\"\n", "print \"Drift velocity of electrons is\",vd,\"m s^-1\"\n", "print \"Thus the terminal velocity is high compared to the drift velocity\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.7, Page number 181" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electrical conductivity of copper is 5.9 *10**7 S m^-1\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "AW=63.5; #atomic weight of copper\n", "D=8.93*10**3; #density of copper(kg m^-3)\n", "t=2.48*10**-14; #relaxation time of copper(s)\n", "AV=6.023*10**26; #avagadro no(mole^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.11*10**-31; #mass of a electron(kg)\n", "\n", "#Calculation\n", "n=AV*D/AW; #density of electrons per unit volume(m^-3)\n", "sigma=n*e**2*t/m; #electrical conductivity of copper(Sm^-1)\n", "\n", "#Result\n", "print \"The electrical conductivity of copper is\",round(sigma/10**7,1),\"*10**7 S m^-1\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.8, Page number 181" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The drift velocity in copper is 3.6657 *10**-6 ms^-1\n", "The current density in copper is 4.9736 *10**4 Am^-2\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "I=10; #current(A)\n", "r=0.8*10**-2; #radius of wire(m)\n", "n=8.48*10**28; #density of free electron(m^-3)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "J=I/(math.pi*r**2); #current density of copper(Am^-2)\n", "v=J/(n*e); #drift velocity of copper(ms^-1)\n", "\n", "#Result\n", "print \"The drift velocity in copper is\",round(v*10**6,4),\"*10**-6 ms^-1\"\n", "print \"The current density in copper is\",round(J/10**4,4),\"*10**4 Am^-2\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.9, Page number 182" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The mobility of charge is 6.997 *10**-3 m^2 V^-1 s^-1\n", "The drift velocity of electrons is 0.6997 m s^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r=1.54*10**-8; #resistivity of silver wire at room temperature(ohm metre)\n", "E=100; #Electric field along the wire(V/m)\n", "n=5.8*10**28; #n is assuming of conduction electrons(m^-3)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "mew=1/(r*n*e); #mobility of charge(m^2 V^-1 s^-1)\n", "vd=mew*E; #drift velocity of electrons(m s^-1)\n", "\n", "#Result\n", "print \"The mobility of charge is\",round(mew*10**3,3),\"*10**-3 m^2 V^-1 s^-1\"\n", "print \"The drift velocity of electrons is\",round(vd,4),\"m s^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.10, Page number 182" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The relaxation time collision of electrons in copper obeying classical laws is 2.43 *10**-14 s\n", "The mobility charge of copper obeying classical laws is 0.427 *10**-2 m^2 V^-1 s^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D=8.92*10**3; #density of copper(kg m^-3)\n", "AW=63.5; #atomic weight of copper\n", "r=1.73*10**-8; #resistivity of copper(ohm metre)\n", "AV=6.023*10**26; #avagadro no(mole^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.11*10**-31; #mass of a electron(kg)\n", "\n", "#Calculation\n", "n=AV*D/AW; #density of electrons per unit volume(m^-3)\n", "tow=m/(r*n*e**2); #average time collision of electrons in copper(s)\n", "mew=1/(r*n*e); #mobility of charge(m^2 V^-1 s^-1)\n", "\n", "#Result\n", "print \"The relaxation time collision of electrons in copper obeying classical laws is\",round(tow*10**14,2),\"*10**-14 s\"\n", "print \"The mobility charge of copper obeying classical laws is\",round(mew*10**2,3),\"*10**-2 m^2 V^-1 s^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.11, Page number 183" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electrical resistivity is 4.63 *10**-8 ohm metre\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "r=1.85*10**-10; #the radius of sodium atom(m)\n", "t=3*10**-14; #the classic value of mean free time(sec)\n", "temp=0; #temperature(centigrade)\n", "na=2; #number of atoms in a unit cell\n", "ne=1; #number of electrons per unit cell\n", "e=1.6*10**-19; #charge of electron(c)\n", "m=9.11*10**-31; #mass of a electron(kg)\n", "\n", "#Calculation \n", "a=4*r/math.sqrt(3); #a is one side in bcc structure unit cell(m)\n", "v=a**3; #volume of bcc structure unit cell(m^3)\n", "n=na*ne/v; #density of electrons per unit volume(m^-3)\n", "rho=m/(n*e**2*t); #The electrical resistivity(ohm metre)\n", "\n", "#Result\n", "print \"The electrical resistivity is\",round(rho*10**8,2),\"*10**-8 ohm metre\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.12, Page number 184" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Free electron concentration in aluminium is 0.18 V/m\n", "Mobility of the charge is 1.28 *10**-3 m^2 V^-1 S^-1\n", "The drift velocity of electrons is 2.304 *10**-4 m s^-1\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rho=2.7*10**-8; #electrical resistivity of aluminium(ohm metre)\n", "AW=26.98; #atomic weight of aluminium\n", "d=2.7*10**3; #density of volume(Kg/m^3)\n", "R=60*10**-3; #resistance(W)\n", "l=5; #length of aluminium wire(m)\n", "i=15; #aluminuim wire carries a current(A)\n", "fe=3; #number of free electrons \n", "AV=6.023*10**26; #avagadro no(mole^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "n=AV*d*fe/AW; #density of electrons per unit volume(electrons/m^-3)\n", "mew=1/(n*e*rho); #mobility of the charge(m^2 V^-1 S^-1)\n", "E=i*R/l; #free electron concentration(V/m)\n", "vd=mew*E; #drift velocity(m s^-1)\n", "\n", "#Result\n", "print \"Free electron concentration in aluminium is\",E,\"V/m\"\n", "print \"Mobility of the charge is\",round(mew*10**3,2),\"*10**-3 m^2 V^-1 S^-1\"\n", "print \"The drift velocity of electrons is\",round(vd*10**4,3),\"*10**-4 m s^-1\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.13, Page number 184" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resistance of an intrinsic Ge rod is 4310 ohm\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l=1*10**-2; #length of intrinsic Ge rod(m)\n", "b=1*10**-3; #breadth of intrinsic Ge rod(m)\n", "t=1*10**-3; #thickness of intrinsic Ge rod(m)\n", "temp=300; #temperature(K)\n", "d=2.5*10**19; #intrinsic carrier density(Kg/m^3)\n", "z=0.39; #mobility of electron(m^2 V^-1 S^-1)\n", "zh=0.19; #mobility of hole(m^2 V^-1 S^-1) \n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "x=d*e*(z+zh); #electrical conductivity(ohm^-1 m^-1)\n", "r=1/x; #electrical resistivity(ohm metre)\n", "A=b*t; #area(m^2)\n", "R=r*l/A; #resistance of an intrinsic Ge rod(ohm)\n", "\n", "#Result\n", "print \"The resistance of an intrinsic Ge rod is\",int(R),\"ohm\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.14, Page number 188" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thermal conductivity of copper is 189.9299 W m^-1 K^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=8.48*10**28; #free electron density of copper(m^-3)\n", "y=2.8138*10**-9; #mean free path(m)\n", "v=1.1536*10**5; #velocity of copper(m s^-1)\n", "t=20; #temperature of copper(C)\n", "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n", "\n", "#Calculation\n", "K=1/2*(d*v*y*Kb); #thermal conductivity of copper(W m^-1 K^-1)\n", "\n", "#Result\n", "print \"The thermal conductivity of copper is\",round(K,4),\"W m^-1 K^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.15, Page number 189" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thermal conductivity of brass is 14.64 W m^-1 K^-1\n", "The thermal resistance of brass is 4.503 K W^-1\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "er=50*10**-8; #electrical resistivity(ohm metre)\n", "t=300; #temperature(K)\n", "r=13*10**-3; #radius of brass(m)\n", "th=35*10**-3; #thickness of brass(m)\n", "L=2.44*10**-8; #Lorentz number(W ohm K^-2)\n", "\n", "#Calculation\n", "K=L*t/er; #thermal conductivity of brass(W m^-1 K^-1)\n", "A=math.pi*r**2; #area of brass disk(m^2)\n", "Rt=th/(K*A); #thermal resistance of brass(K W^-1)\n", "\n", "#Result\n", "print \"The thermal conductivity of brass is\",K,\"W m^-1 K^-1\"\n", "print \"The thermal resistance of brass is\",round(Rt,3),\"K W^-1\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.16, Page number 189" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Lorentz number is 2.2094 *10**-8 W ohm K^-2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "x=5.87*10**7; #electrical conductivity(ohm^-1 m^-1)\n", "k=380; #thermal conductivity of copper(W m-1 K^-1)\n", "t=293; #temperature of copper(K)\n", "\n", "#Calculation\n", "L=k/(x*t); #Lorentz number(W ohm K^-2)\n", "\n", "#Result\n", "print \"Lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm K^-2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 7.17, Page number 189" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thermal conductivity of copper is 468.48 W m^-1 K^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "x=6.40*10**7; #electrical conductivity(mho m^-1)\n", "t=300; #temperature of copper(K)\n", "L=2.44*10**-8; #Lorentz number(W ohm K^-2)\n", "\n", "#Calculation\n", "K=x*t*L; #thermal conductivity of copper(W m^-1 K^-1)\n", "\n", "#Result\n", "print \"The thermal conductivity of copper is\",K,\"W m^-1 K^-1\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }