{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#13: Dielectrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 13.1, Page number 356" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electron polarisation is 3.945 *10**-7 C/m^2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=3.61*10**-10; #lattice constant of copper which is Fcc crystal(m)\n", "x=1*10**-18; #average displacement of the electrons relative to the nucleus(m)\n", "z=29; #atomic number of copper\n", "n=4; #number of atoms per unit cell in FCC crystal\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "ne=((n*z)/(a*a*a)); #number of electrons(electrons/m^3) \n", "P=ne*e*x; #The electron polarisation(C/m^2)\n", "\n", "#Result\n", "print \"The electron polarisation is\",round(P*10**7,3),\"*10**-7 C/m^2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 13.2, Page number 356" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The dipole moment of each atom in a field is 1.9646 *10**-35 C m**-3\n", "The effective distance at this field strength between the centre and the nucleus is 8.77 *10**-18 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rp=11.7; #relative permittivity of silicon\n", "N=4.82*10**28; #number of atoms per unit volume(atoms/m^3)\n", "ro=8.85*10**-12; #permittivity of free space\n", "E=10**4; #E(Vm^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "Z=14; #atomic number of silicon \n", "\n", "#Calculation\n", "z=(ro*(rp-1))/N #electronic polarisability(Fm^2)\n", "mew=z*E; #The dipole moment of each atom(Cm^-3)\n", "x=y/(Z*e); #The effective distance at this field strength between the centre and the nucleus(m)\n", "\n", "#Result\n", "print \"The dipole moment of each atom in a field is\",round(y*10**35,4),\"*10**-35 C m**-3\"\n", "print \"The effective distance at this field strength between the centre and the nucleus is\",round(x*10**18,2),\"*10**-18 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 13.3, Page number 357" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electronic polarisability is 1.39 *10**-41 Fm**2\n", "The relative permittivity in hydrogen gas is 1.0015\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=9.8*10**26; #density of hydrogen gas(atoms/m^3)\n", "r=0.50*10**-10; #radius of the hydrogen atom(m)\n", "ro=8.85*10**-12; #permittivity of free space\n", "\n", "#Calculation\n", "z=(4*math.pi*ro*r**3)/10**-41; #electronic polarisability(Fm^2)\n", "rp=(((d*z*10**-41)/ro)+1); #The relative permittivity in hydrogen gas\n", "\n", "#Result\n", "print \"The electronic polarisability is\",round(z,2),\"*10**-41 Fm**2\"\n", "print \"The relative permittivity in hydrogen gas is\",round(rp,4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 13.4, Page number 357" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The static dielectric constant of solid argon is 1.53679\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "z=1.75*10**-40; #electronic polarisability(Fm^2)\n", "d=1.8*10**3; #density of argon atom(Kg/m^3)\n", "Z=39.95; #atomic weight of argon\n", "NA=6.025*10**26; #Avagadro number(mole^-1)\n", "ro=8.85*10**-12; #permittivity of free space\n", "\n", "#Calculation\n", "N=((NA*d)/Z); #The number of atoms/unit volume(atoms/m^3) \n", "rp=(((N*z)/ro)+1); #The static dielectric constant of solid argon\n", "\n", "#Result\n", "print \"The static dielectric constant of solid argon is\",round(rp,5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 13.5, Page number 366" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ratio between electronic and ionic polarisability of this material is 1.7376\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "er=4.94; #static dielecric constant of a material\n", "n=2.69; #index of friction\n", "\n", "#Calculation\n", "x=((er-1)*(n+2))/((er+2)*(n-1))-1; #Ratio between ionic and electronic polarisability of this material\n", "y=1/x; #Ratio between electronic and ionic polarisability of this material\n", "\n", "#Result\n", "print \"Ratio between electronic and ionic polarisability of this material is\",round(y,4)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }