{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#11: Extrinsic Semiconductors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.1, Page number 307" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Before adding boron atoms,the semiconductor is an intrinsic semiconductor\n", "conductivity before adding boron atoms is 2.016 ohm^-1 m^-1\n", "After adding boron atoms,the semiconductor becomes a P-type semiconductor\n", "conductivity after adding boron atoms is 1.44 *10**4 ohm^-1 m^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=2.1*10**19; #intrinsic charge carriers(m^-3)\n", "me=0.4; #electron mobility(m^2 V^-1 s^-1)\n", "mh=0.2; #hole mobility(m^2 V^-1 s^-1)\n", "d=4.5*10**23; #density of boron(m^-3)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "C=ni*e*(me+mh); #conductivity before adding boron atoms(ohm^-1 m^-1)\n", "c=d*e*mh; #conductivity after adding boron atoms(ohm^-1 m^-1)\n", "\n", "#Result\n", "print \"Before adding boron atoms,the semiconductor is an intrinsic semiconductor\"\n", "print \"conductivity before adding boron atoms is\",C,\"ohm^-1 m^-1\"\n", "print \"After adding boron atoms,the semiconductor becomes a P-type semiconductor\"\n", "print \"conductivity after adding boron atoms is\",c/10**4,\"*10**4 ohm^-1 m^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.2, Page number 307" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DensiTy of electrons in n-type silicon is 1.4423 *10**24 electrons/m^3\n", "DensiTy of holes in n-type silicon is 1.56 *10**8 holes/m^3\n", "DensiTy of holes in p-type silicon is 3.75e+24 holes/m^3\n", "DensiTy of electrons in p-type silicon is 6.0 *10**7 electrons/m^3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=1.5*10**16; #intrinsic charge carriers(m^-3)\n", "me=1300*10**-4; #electron mobility(m^2 V^-1 s^-1)\n", "mh=500*10**-4; #hole mobility(m^2 V^-1 s^-1)\n", "c=3*10**4; #conductivity of n-tpye silicon(ohm^-1 m^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "ne=c/(e*me); #DensiTy of electrons in n-type silicon(electrons/m^3)\n", "nh=ni**2/ne; #Density of holes in n-type silicon(holes/m^3)\n", "Ne=c/(e*mh); #Density of holes in p-type silicon(holes/m^3)\n", "Nh=ni**2/Ne; #Density of electrons in p-type silicon(holes/m^3)\n", "\n", "#Result\n", "print \"DensiTy of electrons in n-type silicon is\",round(ne/10**24,4),\"*10**24 electrons/m^3\"\n", "print \"DensiTy of holes in n-type silicon is\",nh/10**8,\"*10**8 holes/m^3\"\n", "print \"DensiTy of holes in p-type silicon is\",Ne,\"holes/m^3\"\n", "print \"DensiTy of electrons in p-type silicon is\",Nh/10**7,\"*10**7 electrons/m^3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.3, Page number 308" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electron concentration is 2.0 *10**9 electrons/m^3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=2*10**16; #intrinsic charge carriers(m^-3)\n", "Na=5*10**23; #density of acceptor concentration of silicon with arsenic(atoms)\n", "Nd=3*10**23; #density of donor concentration of silicon with arsenic(atoms)\n", "\n", "#Calculation\n", "nh=Na-Nd; #density of hole(m^-3)\n", "ne=ni**2/nh; #The electron concentration(electrons/m^3)\n", "\n", "#Result\n", "print \"The electron concentration is\",ne/10**9,\"*10**9 electrons/m^3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.4, Page number 309" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The position of fermi level is 4.893 *10**-20 J or 0.3058 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=5*10**28; #density of silicon atom(atoms/m^3)\n", "nd=2.5*10**7; #donor concentration in 1 atom per si atom\n", "T=300; #Temperature(K)\n", "Eg=1.1*1.6*10**-19; #Eg for silicon(eV)\n", "kb=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n", "m=9.11*10**-31; #mass of electon(kg)\n", "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n", "\n", "#Calculation\n", "Nd=d/nd; #The donor concentration(atoms/m^3)\n", "Ef=(Eg/2)+(kb*T*(math.log(Nd/(2*((2*math.pi*m*kb*T)/h**2)**(3/2))))); #The position of fermi level at 300K(J)\n", "\n", "#Result\n", "print \"The position of fermi level is\",round(Ef*10**20,3),\"*10**-20 J or\",round(Ef/(1.6*10**-19),4),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.5, Page number 310" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The density of the intrinsic crystal for p-type is 1.302 *10**21 m^-3\n", "The minor carrier concentration for p-type is 1.728e+11 electrons/m^3\n", "The density of the intrinsic crystal for n-type is 4.6296 *10**20 m^-3\n", "The minor carrier concentration for n-type is 4.86e+11 holes/m^3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ni=1.5*10**16; #intrinsic charge carriers(m^-3)\n", "r1=10*10**-2; #resistivity of p-type silicon(ohm m)\n", "r2=10*10**-2; #resistivity of n-type silicon(ohm m)\n", "me=1350*10**-4; #The mobility of the charge carrier(m^2 V^-1 s^-1)\n", "mh=480*10**-4; #The hole charge carrier(m^2 V^-1 s^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "Na=1/(r1*e*mh); #The density of the intrinsic crystal for p-type(m^-3)\n", "ne=ni**2/Na; #The minor carrier concentration for p-type(electrons/m^3)\n", "Nd=1/(r2*e*me); #The density of the intrinsic crystal for n-type(m^-3)\n", "nh=ni**2/Nd; #The minor carrier concentration for n-type(electrons/m^3)\n", "\n", "#Result\n", "print \"The density of the intrinsic crystal for p-type is\",round(Na/10**21,3),\"*10**21 m^-3\"\n", "print \"The minor carrier concentration for p-type is\",ne,\"electrons/m^3\"\n", "print \"The density of the intrinsic crystal for n-type is\",round(Nd/10**20,4),\"*10**20 m^-3\"\n", "print \"The minor carrier concentration for n-type is\",nh,\"holes/m^3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.6, Page number 315" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electron mobility is 0.14 m^2 V^-1 s^-1\n", "The charge carrier density is 5e+21 electrons/m^3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c=112; #conductivity of a n-type silicon specimen(ohm^-1 m^-1)\n", "RH=1.25*10**-3; #Hall coefficient of a n-type silicon specimen(m^3 C^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "me=c*RH; #electron mobility(m^2 V^-1 s^-1)\n", "ne=c/(me*e); #The charge carrier density(electrons/m^3)\n", "\n", "#Result\n", "print \"The electron mobility is\",me,\"m^2 V^-1 s^-1\"\n", "print \"The charge carrier density is\",ne,\"electrons/m^3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.7, Page number 315" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hall coefficient of semiconductor is 3.7e-06 C^-1 m^3\n", "The density of the charge carrier is 1.689 *10**24 electrons/m^3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l=12*10**-3; #length of semi conductor crystal(m)\n", "b=1*10**-3; #breadth of semi conductor crystal(m)\n", "t=1*10**-3; #thickness of semi conductor crystal(m)\n", "I=20*10**-3; #current(A)\n", "Vh=37*10**-6; #voltage measured across the width(V)\n", "B=0.5; #magnetic flux density(Wb/m^2)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "RH=Vh*t/(I*B); #Hall coefficient of semiconductor(C^-1 m^3)\n", "ne=1/(RH*e); #The density of the charge carrier(electrons/m^3)\n", "\n", "#Result\n", "print \"Hall coefficient of semiconductor is\",RH,\"C^-1 m^3\"\n", "print \"The density of the charge carrier is\",round(ne/10**24,3),\"*10**24 electrons/m^3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.8, Page number 315" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hall coefficient of silicon plate is 3.66 *10**-4 m^3 C^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l=100*10**-3; #length of silicon plate(m)\n", "b=10*10**-3; #breadth of silicon plate(m)\n", "t=1*10**-3; #thickness of silicon plate(m)\n", "I=10**-2; #current(A)\n", "Vh=1.83*10**-3; #voltage measured across the width(V)\n", "B=0.5; #magnetic flux density(Wb/m^2)\n", "\n", "#Calculation\n", "RH=Vh*t/(I*B); #Hall coefficient of silicon plate(m^3 C^-1)\n", "\n", "#Result\n", "print \"Hall coefficient of silicon plate is\",RH*10**4,\"*10**-4 m^3 C^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.9, Page number 316" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type\n", "The density of the charge carrier is 8.503 *10**22 electrons/m^3\n", "The mobility of the charge carrier is 14.7 *10**-3 m^2 V^-1 s^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "RH=7.35*10**-5; #Hall coefficient of silicon specimen(m^3 C^-1)\n", "rh=-7.35*10**-5; #Hall coefficient of silicon specimen(m^3 C^-1)\n", "c=200; #conductivity(ohm^-1 m^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "ne=1/(RH*e); #The density of the charge carrier(electrons/m^3)\n", "me=c*RH; #The mobility of the charge carrier(m^2 V^-1 s^-1)\n", "\n", "#Result\n", "print \"The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type\"\n", "print \"The density of the charge carrier is\",round(ne/10**22,3),\"*10**22 electrons/m^3\"\n", "print \"The mobility of the charge carrier is\",me*10**3,\"*10**-3 m^2 V^-1 s^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.10, Page number 316" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The density of the charge carrier is 1.7728 *10**22 electrons/m^3\n", "The mobility of the charge carrier is 0.06346 m^2 V^-1 s^-1\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "RH=4.16*10**-4; #Hall coefficient of n-type semiconductor(m^3 C^-1)\n", "c=180; #conductivity(ohm^-1 m^-1)\n", "e=1.6*10**-19; #charge of electron(c)\n", "x=1.18; #correction factor for RH\n", "\n", "#Calculation\n", "ne=x/(RH*e); #The density of the charge carrier(electrons/m^3)\n", "me=c/(ne*e); #The mobility of the charge carrier(m^2 V^-1 s^-1)\n", "\n", "#Result\n", "print \"The density of the charge carrier is\",round(ne/10**22,4),\"*10**22 electrons/m^3\"\n", "print \"The mobility of the charge carrier is\",round(me,5),\"m^2 V^-1 s^-1\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.11, Page number 317" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The hall coefficient measured by the probes is 1.75 mV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l=1*10**-3; #length of rectangular plane sheet of doped silicon(m)\n", "b=1*10**-3; #breadth of semi rectangular plane sheet of doped silicon(m)\n", "t=0.5*10**-3; #thickness of rectangular plane sheet of doped silicon(m)\n", "RH=1.25*10**-3; #Hall coefficient of the material(m^3 C^-1)\n", "I=1*10**-3; #current(A)\n", "B=0.7; #magnetic flux density(Wb/m^2)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "Vh=RH*I*B/t; #The hall coefficient measured by the probes(mV)\n", "\n", "#Result\n", "print \"The hall coefficient measured by the probes is\",Vh*10**3,\"mV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.12, Page number 317" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The density of the charge carrier is 1.70765 *10**22 m^-3\n", "The mobility is 0.04099 m^2 V^-1 s^-1\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "RH=3.66*10**-4; #Hall coefficient of a doped silicon(m^3 C^-1)\n", "r=8.93*10**-3; #The resistivity(ohm m)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "n=1/(RH*e); #The density of the charge carrier(m^-3)\n", "me=RH/r; #The mobility(m^2 V^-1 s^-1)\n", "\n", "#Result\n", "print \"The density of the charge carrier is\",round(n/10**22,5),\"*10**22 m^-3\"\n", "print \"The mobility is\",round(me,5),\"m^2 V^-1 s^-1\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 11.13, Page number 317" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current density is 2880.0 A/m^2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "RH=0.0125; #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)\n", "rh=-0.0125; #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)\n", "me=0.36; #electron mobility(m^2 V^-1 s^-1)\n", "EH=100; #electric field(V/m)\n", "e=1.6*10**-19; #charge of electron(c)\n", "\n", "#Calculation\n", "n=1/(RH*e); #The density of the charge carrier(m^-3)\n", "c=n*e*me; #conductivity of n-type semiconductor(ohm^-1 m^-1)\n", "J=c*EH; #The current density(A/m^2)\n", "\n", "#Result\n", "print \"The current density is\",J,\"A/m^2\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }