{ "metadata": { "name": "", "signature": "sha256:1888e774039c89bc21625752ef2171fa6b8e8f5f67497ebbdba82729676e8946" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "8: Special Theory of Relativity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.1, Page number 171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "L_0 = 1; #For simplicity, we assume classical length to be unity(m)\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "\n", "#Calculation\n", "L = (1-1/100)*L_0; #Relativistic length(m)\n", "#Relativistic length contraction gives L = L_0*sqrt(1-v^2/c^2), solving for v\n", "v = math.sqrt(1-(L/L_0)**2)*c; #Speed at which relativistic length is 1 percent of the classical length(m/s)\n", "v = math.ceil(v*10**4)/10**4; #rounding off the value of v to 4 decimals\n", "\n", "#Result\n", "print \"The speed at which relativistic length is 1 percent of the classical length is\",v, \"c\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed at which relativistic length is 1 percent of the classical length is 0.1411 c\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.2, Page number 171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "delta_t = 5*10**-6; #Mean lifetime of particles as observed in the lab frame(s)\n", "\n", "#Calculation\n", "v = 0.9*c; #Speed at which beam of particles travel(m/s)\n", "delta_tau = delta_t*math.sqrt(1-(v/c)**2); #Proper lifetime of particle as per Time Dilation rule(s)\n", "\n", "#Result\n", "print \"The proper lifetime of particle is\",delta_tau, \"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The proper lifetime of particle is 2.17944947177e-06 s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.3, Page number 171. theoritical proof" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.4, Page number 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "\n", "#Calculation\n", "v = 0.6*c; #Speed with which the rocket leaves the earth(m/s)\n", "u_prime = 0.9*c; #Relative speed of second rocket w.r.t. the first rocket(m/s)\n", "u1 = (u_prime+v)/(1+(u_prime*v)/c**2); #Speed of second rocket for same direction of firing as per Velocity Addition Rule(m/s)\n", "u1 = math.ceil(u1*10**4)/10**4; #rounding off the value of u1 to 4 decimals\n", "u2 = (-u_prime+v)/(1-(u_prime*v)/c**2); #Speed of second rocket for opposite direction of firing as per Velocity Addition Rule(m/s)\n", "u2 = math.ceil(u2*10**4)/10**4; #rounding off the value of u2 to 4 decimals\n", "\n", "#Result\n", "print \"The speed of second rocket for same direction of firing is\",u1,\"c\"\n", "print \"The speed of second rocket for opposite direction of firing is\",u2,\"c\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of second rocket for same direction of firing is 0.9741 c\n", "The speed of second rocket for opposite direction of firing is -0.6521 c\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.5, Page number 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "L0 = 1; #For simplicity assume length in spaceship's frame to be unity(m)\n", "tau = 1; #Unit time in the spaceship's frame(s)\n", "\n", "#Calculation\n", "L = 1/2*L0; #Length as observed on earth(m)\n", "#Relativistic length contraction gives L = L_0*sqrt(1-v^2/c^2), solving for v\n", "v = math.sqrt(1-(L/L0)**2)*c; #Speed at which length of spaceship is observed as half from the earth frame(m/s)\n", "t = tau/math.sqrt(1-(v/c)**2); #Time dilation of the spaceship's unit time(s)\n", "v = math.ceil(v*10**4)/10**4; #rounding off the value of v to 4 decimals\n", "\n", "#Result\n", "print \"The speed at which length of spaceship is observed as half from the earth frame is\",v, \"c\"\n", "print \"The time dilation of the spaceship unit time is\",t,\"delta_tau\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed at which length of spaceship is observed as half from the earth frame is 0.8661 c\n", "The time dilation of the spaceship unit time is 2.0 delta_tau\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.6, Page number 172" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 3*10**8; #Speed of light in vacuum(m/s)\n", "t1 = 2*10**-7; #Time for which first event occurs(s)\n", "t2 = 3*10**-7; #Time for which second event occurs(s)\n", "x1 = 10; #Position at which first event occurs(m)\n", "x2 = 40; #Position at which second event occurs(m)\n", "\n", "#Calculation\n", "v = 0.6*c; #Velocity with which S2 frame moves relative to S1 frame(m/s)\n", "L_factor = 1/math.sqrt(1-(v/c)**2); #Lorentz factor\n", "delta_t = L_factor*(t2 - t1)+L_factor*v/c**2*(x1 - x2); #Time difference between the events(s)\n", "delta_x = L_factor*(x2 - x1)-L_factor*v*(t2 - t1); #Distance between the events(m)\n", "\n", "#Result\n", "print \"The time difference between the events is\",delta_t, \"s\" \n", "print \"The distance between the events is\",delta_x, \"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time difference between the events is 5e-08 s\n", "The distance between the events is 15.0 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.7, Page number 173" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 3*10**8; #Speed of light in vacuum(m/s)\n", "tau = 2.6*10**-8; #Mean lifetime the particle in its own frame(s)\n", "d = 20; #Distance which the unstable particle travels before decaying(m)\n", "\n", "#Calculation\n", "#As t = d/v and also t = tau/sqrt(1-(v/c)^2), so that\n", "#d/v = tau/sqrt(1-(v/c)^2), solving for v\n", "v = math.sqrt(d**2/(tau**2+(d/c)**2)); #Speed of the unstable particle in lab frame(m/s)\n", "v = v/10**8;\n", "v = math.ceil(v*10)/10; #rounding off the value of v to 1 decimal\n", "\n", "#Result\n", "print \"The speed of the unstable particle in lab frame is\",v,\"*10**8 m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of the unstable particle in lab frame is 2.8 *10**8 m/s\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.8, Page number 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "me = 1; #For simplicity assume mass of electron to be unity(kg)\n", "tau = 2.3*10**-6; #Average lifetime of mu-meson in rest frame(s)\n", "t = 6.9*10**-6; #Average lifetime of mu-meson in laboratory frame(s)\n", "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", "C = 3*10**8; #Speed of light in vacuum(m/s)\n", "m_e = 9.1*10**-31; #Mass of an electron(kg)\n", "\n", "#Calculation\n", "#Fromm Time Dilation Rule, tau = t*sqrt(1-(v/c)^2), solving for v\n", "v = c*math.sqrt(1-(tau/t)**2); #Speed of mu-meson in the laboratory frame(m/s)\n", "v = math.ceil(v*10**5)/10**5; #rounding off the value of v to 5 decimals\n", "m0 = 207*me; #Rest mass of mu-meson(kg)\n", "m = m0/math.sqrt(1-(v/c)**2); #Relativistic variation of mass with velocity(kg)\n", "m = math.ceil(m*10)/10; #rounding off the value of m to 1 decimal\n", "T = (m*m_e*C**2 - m0*m_e*C**2)/e; #Kinetic energy of mu-meson(eV)\n", "T = T*10**-6; #Kinetic energy of mu-meson(MeV)\n", "T = math.ceil(T*100)/100; #rounding off the value of T to 2 decimals\n", " \n", "#Result\n", "print \"The speed of mu-meson in the laboratory frame is\",v, \"c\"\n", "print \"The effective mass of mu-meson is\",m, \"me\"\n", "print \"The kinetic energy of mu-meson is\",T, \"MeV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of mu-meson in the laboratory frame is 0.94281 c\n", "The effective mass of mu-meson is 621.1 me\n", "The kinetic energy of mu-meson is 211.97 MeV\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.9, Page number 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "m0 = 1; #For simplicity assume rest mass to be unity(kg)\n", "\n", "#Calculation\n", "m = (20/100+1)*m0; #Mass in motion(kg)\n", "#As m = m0/sqrt(1-(u/c)^2), solving for u\n", "u = math.sqrt(1-(m0/m)**2)*c; #Speed of moving mass(m/s) \n", "u = math.ceil(u*10**3)/10**3; #rounding off the value of u to 3 decimals\n", "\n", "#Result\n", "print \"The speed of moving body is\",u, \"c\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of moving body is 0.553 c\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.10, Page number 175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 3*10**8; #Speed of light in vacuum(m/s)\n", "dE = 4*10**26; #Energy radiated per second my the sun(J/s)\n", "\n", "#Calculation\n", "dm = dE/c**2; #Rate of decrease of mass of sun(kg/s)\n", "dm = dm/10**9;\n", "dm = math.ceil(dm*10**3)/10**3; #rounding off the value of dm to 3 decimals\n", "\n", "#Result\n", "print \"The rate of decrease of mass of sun is\",dm,\"*10**9 kg/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of decrease of mass of sun is 4.445 *10**9 kg/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.11, Page number 175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 1; #For simplicity assume speed of light to be unity(m/s)\n", "m0 = 9.1*10**-31; #Mass of the electron(kg)\n", "E0 = 0.512; #Rest energy of electron(MeV)\n", "T = 10; #Kinetic energy of electron(MeV)\n", "\n", "#Calculation\n", "E = T + E0; #Total energy of electron(MeV)\n", "# From Relativistic mass-energy relation E^2 = c^2*p^2 + m0^2*c^4, solving for p\n", "p = math.sqrt(E**2-m0**2*c**4)/c; #Momentum of the electron(MeV)\n", "p = math.ceil(p*100)/100; #rounding off the value of p to 2 decimals\n", "#As E = E0/sqrt(1-(u/c)^2), solving for u\n", "u = math.sqrt(1-(E0/E)**2)*c; #Velocity of the electron(m/s)\n", "u = math.ceil(u*10**4)/10**4; #rounding off the value of u to 4 decimals\n", "\n", "#Result\n", "print \"The momentum of the electron is\",p,\"/c MeV\"\n", "print \"The velocity of the electron is\",u, \"c\"\n", "\n", "#answer for velocity given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The momentum of the electron is 10.52 /c MeV\n", "The velocity of the electron is 0.9989 c\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.12, Page number 175. theoritical proof" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.13, Page number 176" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 3*10**8; #Speed of light in vacuum(m/s)\n", "E = 4.5*10**17; #Total energy of object(J)\n", "px = 3.8*10**8; #X-component of momentum(kg-m/s)\n", "py = 3*10**8; #Y-component of momentum(kg-m/s)\n", "pz = 3*10**8; #Z-component of momentum(kg-m/s)\n", "\n", "#Calculation\n", "p = math.sqrt(px**2+py**2+pz**2); #Total momentum of the object(kg-m/s)\n", "#From Relativistic mass-energy relation E^2 = c^2*p^2 + m0^2*c^4, solving for m0\n", "m0 = math.sqrt(E**2/c**4 - p**2/c**2); #Rest mass of the body(kg)\n", "m0 = math.ceil(m0*100)/100; #rounding off the value of m0 to 2 decimals\n", "\n", "#Result\n", "print \"The rest mass of the body is\",m0, \"kg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rest mass of the body is 4.63 kg\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.14, Page number 176" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "c = 3*10**8; #Speed of light in vacuum(m/s)\n", "m = 50000; #Mass of high speed probe(kg)\n", "\n", "#Calculation\n", "u = 0.8*c; #Speed of the probe(m/s)\n", "p = m*u/math.sqrt(1-(u/c)**2); #Momentum of the probe(kg-m/s)\n", "\n", "#Result\n", "print \"The momentum of the high speed probe is\",p, \"kg-m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The momentum of the high speed probe is 2e+13 kg-m/s\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.15, Page number 177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e = 1.6*10**-19; #Electronic charge, C = Energy equivalent of 1 eV(J/eV)\n", "m0 = 9.11*10**-31; #Rest mass of electron(kg)\n", "c = 3*10**8; #Speed of light in vacuum(m/s)\n", "\n", "#Calculation\n", "u1 = 0.98*c; #Inital speed of electron(m/s)\n", "u2 = 0.99*c; #Final speed of electron(m/s)\n", "m1 = m0/math.sqrt(1-(u1/c)**2); #Initial relativistic mass of electron(kg)\n", "m2 = m0/math.sqrt(1-(u2/c)**2); #Final relativistic mass of electron(kg)\n", "dm = m2 - m1; #Change in relativistic mass of the electron(kg)\n", "W = dm*c**2/e; #Work done on the electron to change its velocity(eV)\n", "W = W*10**-6; #Work done on the electron to change its velocity(MeV)\n", "W = math.ceil(W*100)/100; #rounding off the value of W to 2 decimals\n", "#As W = eV, V = accelerating potential, solving for V\n", "V = W*10**6; #Accelerating potential(volt)\n", "V = V/10**6;\n", "\n", "#Result\n", "print \"The change in relativistic mass of the electron is\",dm, \"kg\"\n", "print \"The work done on the electron to change its velocity is\",W, \"MeV\"\n", "print \"The accelerating potential is\",V, \"*10**6 volt\"\n", "\n", "#answers given in the book are wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in relativistic mass of the electron is 1.87996052912e-30 kg\n", "The work done on the electron to change its velocity is 1.06 MeV\n", "The accelerating potential is 1.06 *10**6 volt\n" ] } ], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }