{ "metadata": { "name": "", "signature": "sha256:544912fca601384def1f6da3b02bc7431b47e0d8f9efa5f2e7d2a367448daaa6" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Magnetic Properties" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.1, Page number 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "H=6.5*10**-4; #magnetic field in T\n", "M=1.4; #field with iron\n", "\n", "#Calculation\n", "chi=M/H;\n", "mew_r=1+chi;\n", "mew_r=math.ceil(mew_r*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"relative permeability of iron is\",mew_r);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('relative permeability of iron is', 2154.85)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.2, Page number 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "H=220; #field in amp/m\n", "M=3300; #magnetisation in amp/m\n", "\n", "#Calculation\n", "chi=M/H;\n", "mew_r=1+chi;\n", "\n", "#Result\n", "print(\"relative permeability is\",mew_r);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('relative permeability is', 16.0)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.3, Page number 120 *****" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "r=5.29*10**-11; #radius of orbit in m\n", "B=2; #applied field in Tesla\n", "e=1.602*10**-19; #charge of electron in coulomb\n", "m=9.108*10**-31; #mass of electron in kg\n", "\n", "#Calculation\n", "mew=(e**2)*(r**2)*B/(4*m);\n", "\n", "#Result\n", "print(\"magnetic moment in Am^2 is\",mew);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('magnetic moment in Am^2 is', 3.94260574090909e-29)\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.4, Page number 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "chi=0.5*10**-5; #susceptibility \n", "H=10**6; #field strength in amp/m\n", "\n", "#Calculation\n", "mew_0=4*math.pi*10**-7;\n", "I=chi*H;\n", "B=mew_0*(I+H);\n", "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"intensity of magnetisation in Amp/m is\",I);\n", "print(\"flux density in Weber/m^2 is\",B);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('intensity of magnetisation in Amp/m is', 5.0)\n", "('flux density in Weber/m^2 is', 1.257)\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.5, Page number 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "e=2.86; #edge in armstrong\n", "e=e*10**-10; #edge in m\n", "Is=1.76*10**6; #magnetisation in amp/m\n", "mewB=9.27*10**-24; #1 bohr magneton in amp m^2\n", "\n", "#Calculation\n", "N=2/(e**3); #density per m^3\n", "mewbar=Is/N;\n", "mew_bar=mewbar/mewB;\n", "mew_bar=math.ceil(mew_bar*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"average dipole moment in mewB is\",mew_bar);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('average dipole moment in mewB is', 2.221)\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.6, Page number 121 ***" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "H=10**6; #magnetic field in amp/m\n", "chi=1.5*10**-3; #susceptibility\n", "\n", "#Calculation\n", "mew_0=4*math.pi*10**-7;\n", "M=chi*H;\n", "B=mew_0*(M+H);\n", "\n", "#Result\n", "print(\"magnetisation in Amp/m is\",M);\n", "print(\"flux density in Tesla is\",B);\n", "\n", "#answer for flux density given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('magnetisation in Amp/m is', 1500.0)\n", "('flux density in Tesla is', 1.258522017028071)\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.7, Page number 121" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "chi=3.7*10**-3; #susceptibility \n", "H=10**4; #field strength in amp/m\n", "\n", "#Calculation\n", "mew_0=4*math.pi*10**-7;\n", "M=chi*H;\n", "B=mew_0*(M+H);\n", "B=math.ceil(B*10**5)/10**5; #rounding off to 5 decimals\n", "\n", "#Result\n", "print(\"magnetisation in Amp/m is\",M);\n", "print(\"flux density in Weber/m^2 is\",B);\n", "\n", "#answer for flux density given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('magnetisation in Amp/m is', 37.0)\n", "('flux density in Weber/m^2 is', 0.01262)\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.8, Page number 121" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "r=0.052*10**-9; #radius of orbit in m\n", "B=1; #magnetic field in Wb/m^2\n", "e=1.6*10**-19; #charge of electron in coulomb\n", "m=9.1*10**-31; #mass of electron in kg\n", "\n", "#Calculation\n", "dmew=(e**2)*(r**2)*B/(4*m);\n", "\n", "#Result\n", "print(\"magnetic moment in Am^2 is\",dmew);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('magnetic moment in Am^2 is', 1.901714285714286e-29)\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.9, Page number 122" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "chi=-0.5*10**-5; #susceptibility \n", "H=9.9*10**4; #field strength in amp/m\n", "\n", "#Calculation\n", "mew_0=4*math.pi*10**-7;\n", "I=chi*H;\n", "B=mew_0*H*(1+chi);\n", "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", "B=math.ceil(B*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"intensity of magnetisation in Amp/m is\",I);\n", "print(\"flux density in Weber/m^2 is\",B);\n", "\n", "#answer for flux density given in the book is wrong " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('intensity of magnetisation in Amp/m is', -0.495)\n", "('flux density in Weber/m^2 is', 0.1245)\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.10, Page number 122" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "r=6.1*10**-11; #radius of H atom in m\n", "new=8.8*10**15; #frequency in rev/sec\n", "e=1.6*10**-19;\n", "\n", "#Calculation\n", "mew0=4*math.pi*10**-7;\n", "i=e*new;\n", "B=(mew0*i)/(2*r);\n", "mew=i*math.pi*(r**2);\n", "i=math.ceil(i*10**7)/10**7; #rounding off to 7 decimals\n", "B=math.ceil(B*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"current in amp is\",i);\n", "print(\"magnetic induction in weber/m^2 is\",B);\n", "print(\"dipole moment in amp m^2 is\",mew);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('current in amp is', 0.0014081)\n", "('magnetic induction in weber/m^2 is', 14.503)\n", "('dipole moment in amp m^2 is', 1.645933169972273e-23)\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.11, Page number 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "Is=1.96*10**6; #saturation magnetisation in amp/m\n", "a=3; #cube edge of iron in armstrong\n", "a=a*10**-10; #cube edge of iron in m\n", "mew_b=9.27*10**-24; #bohr magneton in amp/m^2\n", "n=2; #number of atoms per unit cell\n", "\n", "#Calculation\n", "N=n/(a**3);\n", "mewbar=Is/N;\n", "mew_ab=mewbar/mew_b;\n", "mew_ab=math.ceil(mew_ab*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"average number of Bohr magnetons in bohr magneton per atom is\",mew_ab);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('average number of Bohr magnetons in bohr magneton per atom is', 2.8544)\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.12, Page number 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "I=3000; #magnetisation in amp/m\n", "B=0.005; #flux density in weber/m^2\n", "\n", "#Calculation\n", "mew0=4*math.pi*10**-7;\n", "H=(B/mew0)-I;\n", "mew_r=(I/H)+1;\n", "H=math.ceil(H*10**3)/10**3; #rounding off to 3 decimals\n", "mew_r=math.ceil(mew_r*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"magnetic force in amp/m is\",H);\n", "print(\"relative permeability is\",mew_r);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('magnetic force in amp/m is', 978.874)\n", "('relative permeability is', 4.065)\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.13, Page number 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "H=1800; #magnetising field in amp/m\n", "phi=3*10**-5; #magnetic flux in weber\n", "A=0.2; #cross sectional area in cm^2\n", "\n", "#Calculation\n", "A=A*10**-4; #cross sectional area in m^2\n", "B=phi/A;\n", "mew=B/H;\n", "mew=math.ceil(mew*10**8)/10**8 #rounding off to 8 decimals\n", "\n", "#Result\n", "print(\"the permeability in Henry/m is\",mew);\n", "\n", "#answer given in the book is wron" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the permeability in Henry/m is', 0.00083334)\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.14, Page number 124 ********************" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "r=0.04; #radius of circular loop in m\n", "i=1000; #current in mA\n", "i=i*10**-3; #current in amp\n", "B=10**-3; #magnetic flux density in Wb/m^2\n", "theta=45; #angle in degrees\n", "\n", "#Calculation\n", "A=math.pi*(r**2);\n", "mew=i*A;\n", "tow=i*B*math.cos(theta);\n", "mew=math.ceil(mew*10**6)/10**6 #rounding off to 6 decimals\n", "\n", "#Result\n", "print(\"the magnetic dipole moment in amp m^2 is\",mew);\n", "print(\"the torque in Nm is\",tow);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the magnetic dipole moment in amp m^2 is', 0.005027)\n", "('the torque in Nm is', 0.0005253219888177298)\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.15, Page number 125" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "A=100; #area of hysteris loop in m^2\n", "B=0.01; #flux density in wb/m^2\n", "H=40; #magnetic field in amp/m\n", "M=7650; #atomic weight in kg/m^3\n", "\n", "#Calculation\n", "hl=A*B*H;\n", "\n", "#Result\n", "print(\"the hysterisis loss per cycle in J/m^3 is\",hl);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the hysterisis loss per cycle in J/m^3 is', 40.0)\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 4.17, Page number 125" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "hl=200; #hysterisis loss per cycle in J/m^3\n", "M=7650; #atomic weight in kg/m^3\n", "m=100; #magnetisation cycles per second\n", "\n", "#Calculation\n", "hpl=hl*m;\n", "pl=hpl/M;\n", "pl=math.ceil(pl*10**4)/10**4 #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"hysterisis power loss per second in watt/m^3 is\",hpl);\n", "print(\"the power loss in watt/kg is\",pl); \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('hysterisis power loss per second in watt/m^3 is', 20000)\n", "('the power loss in watt/kg is', 2.6144)\n" ] } ], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }