{ "metadata": { "name": "", "signature": "sha256:18ac31f959977ef2080ed3a1b1a6990ce93e604dcfb0f72ab45c0c28a2428e0e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Quantum Mechanics and Quantum Computing" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.1, Page number 41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "c=3*10**8 #velocity of light in m/s\n", "h=6.626*10**-34 #planks constant \n", "m=1.67*10**-27 #mass of proton\n", "\n", "#Calculation\n", "v=c/10 #velocity of proton\n", "lamda=h/(m*v) #de Broglie wave length\n", "\n", "#Result\n", "print(\"the de Broglie wavelength in m is \",lamda);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the de Broglie wavelength in m is ', 1.3225548902195607e-14)\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.2, Page number 42" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "V=400; #potential in Volts\n", "\n", "#Calculation\n", "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n", "\n", "#Result\n", "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in Armstrong is', 0.628)\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.3, Page number 42\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "m=1.674*10**(-27); #mass of neutron in kg\n", "h=6.626*10**(-34);\n", "E=0.025; #kinetic energy in eV\n", "\n", "#Calculation\n", "Ej=E*1.6*10**-19; #kinetic energy in J\n", "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n", "lamdaA=lamda*10**10; #converting wavelength from m to Armstrong\n", "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"The de Broglie wavelength in metres is\",lamda);\n", "print(\"The de Broglie wavelength in Armstrong is\",lamdaA);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in metres is', 1.81062582829353e-10)\n", "('The de Broglie wavelength in Armstrong is', 1.811)\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.4, Page number 42" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "V=1600; #potential in Volts\n", "\n", "#Calculation\n", "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n", "lamda=math.ceil(lamda*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in Armstrong is', 0.32)\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.5, Page number 42" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "deltax=0.2; #distance in armstrong\n", "h=6.626*10**(-34);\n", "\n", "#Calculation\n", "delta_xm=deltax*10**-10; #distance in m\n", "delta_p=h/(2*math.pi*delta_xm);\n", "\n", "#Result\n", "print(\"The uncertainity in momentum of electron in kg m/sec is\",delta_p);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The uncertainity in momentum of electron in kg m/sec is', 5.2728032646344916e-24)\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.6, Page number 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "n1=1;\n", "n2=1;\n", "n3=1; #values in lowest energy\n", "h=6.62*10**(-34);\n", "M=9.1*10**-31; #mass in kg\n", "L=0.1; #side in nm\n", "\n", "#Calculation\n", "L=L*10**-9; #side in m\n", "n=(n1**2)+(n2**2)+(n3**2);\n", "E1=(n*h**2)/(8*M*L**2); #energy in j\n", "E1eV=E1/(1.6*10**-19); #energy in eV\n", "E1eV=math.ceil(E1eV*10)/10; #rounding off to 1 decimals\n", "\n", "#Result\n", "print(\"lowest energy of electron in Joule is\",E1);\n", "print(\"lowest energy of electron is eV\",E1eV);\n", "\n", "#answer for lowest energy in eV given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n", "('lowest energy of electron is eV', 112.9)\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.7, Page number 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "M=9.1*10**(-31); #mass of electron in kg\n", "h=6.66*10**(-34);\n", "E=2000; #kinetic energy in eV\n", "\n", "#Calculation\n", "Ej=E*1.6*10**-19; #kinetic energy in J\n", "lamda=h/math.sqrt(2*M*Ej); #de Broglie wavelength\n", "lamdaA=lamda*10**9; #converting wavelength from m to nm\n", "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"The de Broglie wavelength in nm is\",lamdaA);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in nm is', 0.028)\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.8, Page number 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "n=1; #for minimum energy\n", "h=6.626*10**(-34);\n", "m=9.1*10**-31; #mass in kg\n", "L=4*10**-10; #size in m\n", "\n", "#Calculation\n", "E1=(n*h**2)/(8*m*L**2); #energy in j\n", "\n", "#Result\n", "print(\"lowest energy of electron in Joule is\",E1);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('lowest energy of electron in Joule is', 3.7692201236263733e-19)\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.9, Page number 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.626*10**(-34);\n", "m=9.1*10**-31; #mass in kg\n", "lamda=1.66*10**-10; #wavelength in m\n", "\n", "#Calculation\n", "v=h/(m*lamda); #velocity in m/sec\n", "v_km=v*10**-3; #velocity in km/sec\n", "E=(1/2)*m*v**2; #kinetic energy in joule\n", "EeV=E/(1.6*10**-19); #energy in eV\n", "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"velocity of electron in m/sec is\",round(v));\n", "print(\"velocity of electron in km/sec is\",round(v_km));\n", "print(\"kinetic energy of electron in Joule is\",E);\n", "print(\"kinetic energy of electron in eV is\",EeV);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('velocity of electron in m/sec is', 4386337.0)\n", "('velocity of electron in km/sec is', 4386.0)\n", "('kinetic energy of electron in Joule is', 8.754176510091736e-18)\n", "('kinetic energy of electron in eV is', 54.714)\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.10, Page number 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable decleration\n", "V=15; #potential in kV\n", "\n", "#Calculation\n", "v=V*10**3; #potential in V\n", "lamda=12.26/math.sqrt(v); #de Broglie wavelength\n", "lamda=math.ceil(lamda*10**2)/10**2 #rounding off to 2 decimals\n", "\n", "#result\n", "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in Armstrong is', 0.11)\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.11, Page number 44\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Calculation\n", "m=1.675*10**-27; #mass of neutron in kg\n", "h=6.626*10**-34;\n", "E=10; #kinetic energy in keV\n", "\n", "#Calculation\n", "EeV=E*10**3; #Energy in eV\n", "Ej=EeV*1.6*10**-19; #kinetic energy in J\n", "v=math.sqrt(2*Ej/m); #velocity in m/s\n", "lamda=h/(m*v); #de broglie wavelength in m\n", "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"The velocity in m/sec is\",round(v));\n", "print(\"The de Broglie wavelength in metres is\",lamda);\n", "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The velocity in m/sec is', 1382189.0)\n", "('The de Broglie wavelength in metres is', 2.861996093951046e-13)\n", "('The de Broglie wavelength in Armstrong is', 0.0029)\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.12, Page number 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable decleration\n", "m=9.1*10**-31; #mass of electron in kg\n", "h=6.6*10**-34;\n", "E=2; #kinetic energy in keV\n", "\n", "#Calculation\n", "EeV=E*10**3; #Energy in eV\n", "Ej=EeV*1.6*10**-19; #kinetic energy in J\n", "p=math.sqrt(2*m*Ej); #momentum\n", "lamda=h/p; #de broglie wavelength in m\n", "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"The de Broglie wavelength in metres is\",lamda);\n", "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in metres is', 2.7348483695436575e-11)\n", "('The de Broglie wavelength in Armstrong is', 0.2735)\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.13, Page number 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "m=1.676*10**-27; #mass of neutron in kg\n", "h=6.62*10**-34;\n", "E=0.025; #kinetic energy in eV\n", "\n", "#Calculation\n", "Ej=E*1.6*10**-19; #kinetic energy in J\n", "v=math.sqrt(2*Ej/m); #velocity in m/s\n", "lamda=h/(m*v); #wavelength in m\n", "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n", "lamda_A=math.ceil(lamda_A*10**5)/10**5 #rounding off to 5 decimals\n", "\n", "#Result\n", "print(\"The neutrons wavelength in metres is\",lamda);\n", "print(\"The wavelength in Armstrong is\",lamda_A);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The neutrons wavelength in metres is', 1.8079065940980725e-10)\n", "('The wavelength in Armstrong is', 1.80791)\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.14, Page number 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "V=10; #potential in kV\n", "\n", "#Calculation\n", "V=V*10**3; #potential in V\n", "lamda=12.26/math.sqrt(V); #wavelength\n", "\n", "#Result\n", "print(\"The wavelength in Armstrong is\",lamda);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The wavelength in Armstrong is', 0.1226)\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.15, Page number 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Varialble decleration\n", "h=6.626*10**-34;\n", "m=9.1*10**-31; #mass in kg\n", "l=1; #width in armstrong\n", "\n", "#Calculation\n", "L=l*10**-10; #width in m\n", "#permitted electron energies En=(n**2*h**2)/(8*m*L**2)\n", "#let X = h**2/(8*m*L**2)\n", "X = h**2/(8*m*L**2); #energy in J\n", "XeV=X/(1.6*10**-19); #energy in eV\n", "#in the 1st level n1=1\n", "n1=1;\n", "E1=(n1**2)*XeV; #energy in eV\n", "\n", "#in second level n2=2\n", "n2=2;\n", "E2=(n2**2)*XeV; #energy in eV\n", "#in third level n3=\n", "n3=3;\n", "E3=(n3**2)*XeV; #energy in eV\n", "\n", "#Result\n", "print(\"minimum energy the electron can have in eV is\",round(E1));\n", "print(\"other values of energy are in eV and in eV\",round(E2),round(E3));\n", "\n", "#answers given in the book are wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('minimum energy the electron can have in eV is', 38.0)\n", "('other values of energy are in eV and in eV', 151.0, 339.0)\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.16, Page number 46\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "n=1; #lowest state\n", "L=10; #width in armstrong\n", "\n", "#Calculation\n", "L=L*10**-10; #width in m\n", "x=L/2;\n", "delta_x=1; #interval in armstrong\n", "delta_x=delta_x*10**-10; #interval in m\n", "psi1=(math.sqrt(2/L))*math.sin(math.pi*x/L);\n", "A=psi1**2;\n", "p=A*delta_x;\n", "p=math.ceil(p*10)/10; #de broglie wavelength in armstrong\n", "\n", "#Result\n", "print(\"probability of finding the particle is \",p);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('probability of finding the particle is ', 0.2)\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.17, Page number 46" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "d=970; #density of Na in kg/m^3\n", "n=6.02*10**26;\n", "h=6.62*10**(-34);\n", "m=9.1*10**-31; #mass in kg\n", "w=23; #atomic weight\n", "\n", "#Calculation\n", "N=(d*n)/w; #number of atoms per m^3\n", "A=(h**2)/(8*m);\n", "B=(3*N)/math.pi;\n", "Ef=A*B**(2/3);\n", "EfeV=Ef/(1.6*10**-19);\n", "EfeV=math.ceil(EfeV*10**2)/10**2 #rounding of to 2 decimals\n", "\n", "#Result\n", "print(\"fermi energy of Na in eV is\",EfeV);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('fermi energy of Na in eV is', 3.16)\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.18, Page number 46" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "n1=1;\n", "n2=1;\n", "n3=1; #values in lowest energy\n", "h=6.62*10**(-34);\n", "m=9.1*10**-31; #mass in kg\n", "L=0.1; #side in nm\n", "\n", "#Calculation\n", "L=L*10**-9; #side in m\n", "n=(n1**2)+(n2**2)+(n3**2);\n", "E1=(n*h**2)/(8*m*L**2); #energy in j\n", "E1eV=E1/(1.6*10**-19); #energy in eV\n", "E1eV=math.ceil(E1eV*10**1)/10**1 #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"lowest energy of electron in Joule is\",E1);\n", "print(\"lowest energy of electron in eV is\",E1eV);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n", "('lowest energy of electron in eV is', 112.9)\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.19, Page number 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "mn=1.676*10**-27; #mass of neutron in kg\n", "me=9.1*10**-31; #mass of electron in kg\n", "h=6.62*10**-34;\n", "c=3*10**8; #velocity of light in m/sec\n", "\n", "#Calculation\n", "En=2*me*c**2;\n", "lamda=h/math.sqrt(2*mn*En); #wavelength in m\n", "lamda_A=lamda*10**10; #converting lamda from m to A\n", "lamda_A=math.ceil(lamda_A*10**6)/10**6 #rounding off to 6 decimals\n", "\n", "#Result\n", "print(\"The de broglie wavelength in Angstrom is\",lamda_A);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de broglie wavelength in Angstrom is', 0.000283)\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.20, Page number 47 ***************************************************************************" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "n2=2; #second quantum state\n", "n4=4; #fourth quantum state\n", "h=6.626*10**-34;\n", "m=9.1*10**-31; #mass in kg\n", "a=2; #potential box length in armstrong\n", "\n", "#Calculation\n", "a=a*10**-10; #length in m\n", "A=n2**2*h**2;\n", "B=8*m*a**2;\n", "E2=A/B; #energy in j\n", "E2eV=E2/(1.6*10**-19); #energy in eV\n", "C=n4**2*h**2;\n", "E4=C/B; #energy in j\n", "E4eV=E4/(1.6*10**-19); #energy in eV\n", "\n", "#Result\n", "print(\"energy corresponding to second quantum state in Joule is\",E2);\n", "print(\"energy corresponding to second quantum state in eV is\",E2eV);\n", "print(\"energy corresponding to fourth quantum state in Joule is\",E4);\n", "print(\"energy corresponding to fourth quantum state in eV is\",E4eV);\n", "\n", "\n", "#answers given in the book are wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('energy corresponding to second quantum state in Joule is', 6.030752197802197e-18)\n", "('energy corresponding to second quantum state in eV is', 37.69220123626373)\n", "('energy corresponding to fourth quantum state in Joule is', 2.412300879120879e-17)\n", "('energy corresponding to fourth quantum state in eV is', 150.7688049450549)\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.21, Page number 48 ***********" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "V=344; #accelerated voltage in V\n", "n=1; #first reflection\n", "theta=60; #glancing angle in degrees\n", "\n", "#Calculation\n", "lamda=12.27/math.sqrt(V);\n", "d=(n*lamda)/(2*math.sin(theta));\n", "\n", "#Result\n", "print(\"The spacing of the crystal in Angstrom is\",lamda);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The spacing of the crystal in Angstrom is', 0.6615540636030947)\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.22, Page number 49 *************" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "n2=2; #second quantum state\n", "n3=3; #fourth quantum state\n", "h=6.626*10**-34;\n", "m=9.1*10**-31; #mass in kg\n", "a=1*10**-10; #width of potential well in m\n", "\n", "#Calculation\n", "B=8*m*a**2;\n", "E1=h**2/B; #ground state energy\n", "E1eV=E1/(1.6*10**-19); #energy in eV\n", "A=n2**2*h**2;\n", "E2=A/B; #energy in j\n", "E2eV=E2/(1.6*10**-19); #energy in eV\n", "C=n3**2*h**2;\n", "E3=C/B; #energy in j\n", "E3eV=E3/(1.6*10**-19); #energy in eV\n", "E1=math.ceil(E1*10**3)/10**3 #rounding off to 3 decimals\n", "E1eV=math.ceil(E1eV*10**3)/10**3 #rounding off to 3 decimals\n", "E2eV=math.ceil(E2eV*10**3)/10**3 #rounding off to 3 decimals\n", "E3eV=math.ceil(E3eV*10**3)/10**3 #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"ground state energy in Joule is\",E1);\n", "print(\"ground state energy in eV is\",E1eV);\n", "print(\"first energy state in eV is\",E2eV);\n", "print(\"second energy state in eV is\",E3eV);\n", "\n", "#answers given in the book are wrong by one decimal" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('ground state energy in Joule is', 0.001)\n", "('ground state energy in eV is', 37.693)\n", "('first energy state in eV is', 150.769)\n", "('second energy state in eV is', 339.23)\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.23, Page number 49" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "\n", "#Variable decleration\n", "n3=3; #fourth quantum state\n", "h=6.626*10**-34;\n", "m=9.1*10**-31; #mass in kg\n", "\n", "\n", "#ground state energy E1 = h**2/(8*m*a**2)\n", "#second excited state E3 = (9*h**2)/(8*m*a**2)\n", "#required energy E = E3-E1\n", "#E = (9*h**2)/(8*m*a**2) - h**2/(8*m*a**2)\n", "#E = (h**2/(8*m*a**2))*(9-1)\n", "#therefore E = (8*h**2)/(8*m*a**2)\n", "#hence E = (h**2)/(m*a**2)\n", "\n", "#Result \n", "# the required energy is E = (h**2)/(m*a**2)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.24, Page number 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "delta_x=10**-8; #length of box in m\n", "h=6.626*10**-34;\n", "m=9.1*10**-31; #mass in kg\n", "\n", "#Calculation\n", "delta_v=h/(m*delta_x); #uncertainity in m/sec\n", "delta_vk=delta_v*10**-3; #uncertainity in km/sec\n", "delta_vk=math.ceil(delta_vk*10**2)/10**2 #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"minimum uncertainity in velocity in m/sec is\",round(delta_v));\n", "print(\"minimum uncertainity in velocity in km/sec is\",delta_vk);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('minimum uncertainity in velocity in m/sec is', 72813.0)\n", "('minimum uncertainity in velocity in km/sec is', 72.82)\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.25, Page number 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "mp=1.6*10**-27; #mass of proton in kg\n", "me=9.1*10**-31; #mass of electron in kg\n", "h=6.626*10**(-34);\n", "c=3*10**10; #velocity of light in m/sec\n", "\n", "#Calculation\n", "Ep=me*c**2;\n", "lamda=h/math.sqrt(2*mp*Ep); #wavelength in m\n", "lamda_A=lamda*10**10; #converting lamda from m to A\n", "\n", "#Result\n", "print(\"The de broglie wavelength in Angstrom is\",lamda_A);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de broglie wavelength in Angstrom is', 4.092931643497047e-06)\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.26, Page number 51 *************************************************" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#import module\n", "import math\n", "from __future__ import division\n", "\n", "#Variable decleration\n", "m=1.675*10**(-27); #mass of neutron in kg\n", "h=6.626*10**(-34);\n", "n=1; #diffractive order\n", "d=0.314; #spacing in nm\n", "E=0.04; #kinetic energy in eV\n", "\n", "#Calculation\n", "d=d*10**-9; #spacing in m\n", "Ej=E*1.6*10**-19; #kinetic energy in J\n", "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n", "lamdaA=lamda*10**9; #converting wavelength from m to nm\n", "theta=math.asin((n*lamda)/(2*d));\n", "print(\"The de Broglie wavelength in metres is\",lamda);\n", "print(\"The de Broglie wavelength in nm is\",lamdaA);\n", "print(\"glancing angle in degrees is\",theta);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('The de Broglie wavelength in metres is', 1.4309980469755228e-10)\n", "('The de Broglie wavelength in nm is', 0.1430998046975523)\n", "('glancing angle in degrees is', 0.2298853909391574)\n" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }