{ "metadata": { "name": "", "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Lasers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.1, Page number 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the relative population \n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 590; #wavelength(nm)\n", "h = 6.625*10**-34; #planck's constant\n", "c = 3*10**8; #velocity of light(m/s)\n", "k = 1.38*10**-23; #boltzmann's constant\n", "T = 523; #temperature(Kelvin)\n", "\n", "#Calculation\n", "lamda = lamda*10**-9; #wavelength(m) \n", "#n1byn2 = math.exp(-(E2-E1)/(k*T))\n", "#but E2-E1 = h*new and new = c/lamda\n", "#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\n", "n1byn2 = math.exp(-h*c/(lamda*k*T));\n", "\n", "#Result\n", "print \"relative population of Na atoms is\",n1byn2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "relative population of Na atoms is 5.36748316686e-21\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.2, Page number 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the ratio of stimulated to spontaneous emission \n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 590; #wavelength(nm)\n", "h = 6.625*10**-34; #planck's constant\n", "c = 3*10**8; #velocity of light(m/s)\n", "k = 1.38*10**-23; #boltzmann's constant\n", "T = 523; #temperature(Kelvin)\n", "\n", "#Calculation\n", "lamda = lamda*10**-9; #wavelength(m) \n", "#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n", "#but new = c/lamda\n", "#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\n", "A = math.exp(h*c/(lamda*k*T))-1;\n", "n21dashbyn21 = 1/A; \n", "\n", "#Result\n", "print \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\n", "print \"answer given in the book is wrong\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio of stimulated to spontaneous emission is 5.36748316686e-21\n", "answer given in the book is wrong\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.3, Page number 53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the number of photons emitted \n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda = 632.8; #wavelength of laser(nm)\n", "h = 6.625*10**-34; #planck's constant\n", "c = 3*10**8; #velocity of light(m/s)\n", "p = 3.147; #output power(mW)\n", "\n", "#Calculation\n", "p = p*10**-3; #output power(W)\n", "lamda = lamda*10**-9; #wavelength(m) \n", "new = c/lamda; #frequency(Hz)\n", "E = h*new; #energy of each photon(J)\n", "Em = p*60; #energy emitted per minute(J/min)\n", "N = Em/E; #number of photons emitted per second\n", "\n", "#Result\n", "print \"number of photons emitted per second is\",N" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of photons emitted per second is 6.01183879245e+17\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }