{ "metadata": { "name": "", "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ultrasonics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.1, Page number 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the depth of a submerged submarine\n", "\n", "#Variable declaration\n", "v = 1440; #velocity of ultrasonic waves(m/s)\n", "t = 0.33; #time elapsed(s)\n", "\n", "#Calculation\n", "d = v*t; #distance travelled(m)\n", "d1 = d/2; #depth of submarine(m)\n", "\n", "#Result\n", "print \"depth of the submerged submarine is\",d1, \"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of the submerged submarine is 237.6 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.2, Page number 21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the natural frequency \n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 40; #length of iron rod(mm)\n", "E = 115*10**9; #Young's modulus(N/m**2)\n", "rho = 7.25*10**3; #density of pure iron(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-3; #natural frequency of the rod(kHz)\n", "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print \"depth of the submerged submarine is\",new, \"kHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of the submerged submarine is 49.785 kHz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.3, Page number 21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the fundamental frequency \n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 1; #length of quartz crystal(mm)\n", "E = 7.9*10**10; #Young's modulus(N/m**2)\n", "rho = 2650; #density(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-6; \n", "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"fundamental frequency of crystal is\",new, \"*10**6 Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fundamental frequency of crystal is 2.73 *10**6 Hz\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.4, Page number 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the velocity of waves\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "d = 0.55; #distance between 2 constructive antinodes(mm)\n", "new = 1.5; #frequency of crystal(MHz)\n", " \n", "#Calculation\n", "new = new*10**6; #frequency of crystal(Hz)\n", "d = d*10**-3; #distance between 2 constructive antinodes(m)\n", "#distance between 2 antinodes is given by lamda/2\n", "lamda = 2*d; #wavelength of ultrasonic waves(m)\n", "v = new*lamda; #velocity of waves(m/s)\n", "\n", "#Result\n", "print \"velocity of waves is\",int(v), \"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity of waves is 1650 m/s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.5, Page number 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the natural frequency\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 50; #length of rod(mm)\n", "E = 11.5*10**10; #Young's modulus(N/m**2)\n", "rho = 7250; #density(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-3; #natural frequency of the rod(kHz)\n", "new = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"natural frequency of rod is\",new, \"kHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "natural frequency of rod is 39.83 kHz\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.6, Page number 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the frequency\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 2; #length of crystal(mm)\n", "E = 7.9*10**10; #Young's modulus(N/m**2)\n", "rho = 2650; #density(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-6; #natural frequency of the rod(MHz)\n", "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print \"frequency of crystal is\",new, \"MHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of crystal is 1.365 MHz\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.7, Page number 23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the frequency\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 3; #length of crystal(mm)\n", "E = 8*10**10; #Young's modulus(N/m**2)\n", "rho = 2500; #density(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-3; #natural frequency of the rod(kHz) \n", "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"frequency of crystal is\",new, \"kHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of crystal is 942.81 kHz\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.8, Page number 23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the frequency\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 1.5; #length of crystal(mm)\n", "E = 7.9*10**10; #Young's modulus(N/m**2)\n", "rho = 2650; #density(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-6; #natural frequency of the rod(MHz) \n", "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print \"frequency of crystal is\",new, \"MHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "frequency of crystal is 1.82 MHz\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.9, Page number 24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the depth of the sea\n", "\n", "#Variable declaration\n", "v = 1440; #velocity of ultrasonic waves(m/s)\n", "t = 0.95; #time elapsed(s)\n", "\n", "#Calculation\n", "d = v*t; #distance travelled(m)\n", "d1 = d/2; #depth of sea(m)\n", "\n", "#Result\n", "print \"depth of the submerged submarine is\",int(d1), \"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of the submerged submarine is 684 m\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.10, Page number 24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the depth of a submerged submarine\n", "\n", "#Variable declaration\n", "v = 1440; #velocity of ultrasonic waves(m/s)\n", "t = 0.83; #time elapsed(s)\n", "\n", "#Calculation\n", "d = v*t; #distance travelled(m)\n", "d1 = d/2; #depth of submarine(m)\n", "\n", "#Result\n", "print \"depth of the submerged submarine is\",d1, \"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of the submerged submarine is 597.6 m\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.11, Page number 24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the reverberation time of hall\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "aS = 1050; #total absorption inside hall(Sabine)\n", "V = 9000; #volume of cinema hall(m**3)\n", "\n", "#Calculation\n", "T = 0.165*V/aS; #reverberation time of hall(s)\n", "T = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print \"reverberation time of the hall is\",T, \"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "reverberation time of the hall is 1.4143 s\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.12, Page number 25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the area of interior surface\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "a = 0.65; #average absorption coefficient(Sabine/m**2)\n", "V = 13500; #volume of auditorium(m**3)\n", "T = 1.2; #reverberation time of hall(s)\n", "\n", "#Calculation\n", "S = 0.165*V/(a*T); #reverberation time of hall(s)\n", "S = math.ceil(S*10)/10; #rounding off to 1 decimal\n", "\n", "#Result\n", "print \"total area of interior surface is\",S, \"m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "total area of interior surface is 2855.8 m**2\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.13, Page number 25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the new reverberation time of hall\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "V = 15000; #volume of cinema hall(m**3)\n", "T1 = 1.3; #initial reverberation time of hall(s)\n", "a1S1 = 300; #number of chairs placed\n", "\n", "#Calculation\n", "aS = 0.165*V/T1; #total absorption of hall\n", "T2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\n", "T2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print \"reverberation time of the hall after adding chairs is\",T2, \"s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "reverberation time of the hall after adding chairs is 1.1231 s\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.14, Page number 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the depth of a submerged submarine\n", "\n", "#Variable declaration\n", "v = 1440; #velocity of ultrasonic waves(m/s)\n", "t = 0.5; #time elapsed(s)\n", "\n", "#Calculation\n", "d = v*t; #distance travelled(m)\n", "d1 = d/2; #depth of submarine(m)\n", "\n", "#Result\n", "print \"depth of the submerged submarine is\",int(d1), \"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of the submerged submarine is 360 m\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.15, Page number 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the velocity of waves\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "d = 0.4; #distance between 2 constructive antinodes(mm)\n", "new = 1.5; #frequency of crystal(MHz)\n", " \n", "#Calculation\n", "new = new*10**6; #frequency of crystal(Hz)\n", "d = d*10**-3; #distance between 2 constructive antinodes(m)\n", "#distance between 2 antinodes is given by lamda/2\n", "lamda = 2*d; #wavelength of ultrasonic waves(m)\n", "v = new*lamda; #velocity of waves(m/s)\n", "\n", "#Result\n", "print \"velocity of waves is\",int(v), \"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "velocity of waves is 1200 m/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.16, Page number 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#To calculate the natural frequency \n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "l = 40; #length of iron rod(mm)\n", "E = 11.5*10**10; #Young's modulus(N/m**2)\n", "rho = 7250; #density of pure iron(kg/m**3)\n", "\n", "#Calculation\n", "l = l*10**-3; #length of iron rod(m)\n", "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n", "new = new*10**-3; #natural frequency of the rod(kHz)\n", "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print \"depth of the submerged submarine is\",new, \"kHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "depth of the submerged submarine is 49.785 kHz\n" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }