{ "metadata": { "name": "", "signature": "sha256:3f2462cfb429298e26fc6bf563d665947cd211731889b95d7dd1a2db3452c286" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Fibre Optics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.1, Page number 98 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "n1=1.6; #refractive index of core\n", "n2=1.5; #refractive index of cladding\n", "\n", "#Calculation\n", "NA=math.sqrt((n1**2)-(n2**2));\n", "NA=math.ceil(NA*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"the numerical aperture of the fibre is\",NA);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the numerical aperture of the fibre is', 0.5568)\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.2, Page number 98 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "n1=1.54; #refractive index of core\n", "n2=1.5; #refractive index of cladding\n", "n0=1;\n", "\n", "#Calculation\n", "NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture of fibre\n", "NA=math.ceil(NA*10**5)/10**5; #rounding off to 5 decimals\n", "alpha=math.asin(NA/n0); #acceptance angle in radians\n", "alpha=alpha*57.2957795; #converting radians to degrees\n", "alpha=math.ceil(alpha*10**5)/10**5; #rounding off to 5 decimals\n", "deg=int(alpha); #converting to degrees\n", "t=60*(alpha-deg); \n", "mi=int(t); #converting to minutes\n", "sec=60*(t-mi); #converting to seconds\n", "sec=math.ceil(sec*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"the numerical aperture of the fibre is\",NA);\n", "print(\"the acceptance angle of the fibre in degrees is\",alpha);\n", "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", "\n", "#answer for the angle given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the numerical aperture of the fibre is', 0.34872)\n", "('the acceptance angle of the fibre in degrees is', 20.40905)\n", "('acceptance angle of the fibre is', 20, 'degrees', 24, 'minutes', 32.581, 'seconds')\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.3, Page number 99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "n1=1.6; #refractive index of core\n", "n2=1.49; #refractive index of cladding\n", "\n", "#Calculation\n", "thetac=math.asin(n2/n1); #critical angle in radians\n", "thetac=thetac*57.2957795; #converting radians to degrees\n", "theta_c=math.ceil(thetac*10**3)/10**3; #rounding off to 3 decimals\n", "deg=int(thetac); #converting to degrees\n", "t=60*(thetac-deg); \n", "mi=int(t); #converting to minutes\n", "sec=60*(t-mi); #converting to seconds\n", "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"the critical angle of the fibre in degrees is\",theta_c);\n", "print(\"critical angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the critical angle of the fibre in degrees is', 68.631)\n", "('critical angle of the fibre is', 68, 'degrees', 37, 'minutes', 49.85, 'seconds')\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.4, Page number 99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "NA=0.15; #numerical aperture\n", "n2=1.55; #refractive index of cladding\n", "n0=1.33; #refractive index of water\n", "\n", "#Calculation\n", "n1=math.sqrt((NA**2)+(n2**2)); #refractive index\n", "n_1=math.ceil(n1*10**5)/10**5; #rounding off to 5 decimals\n", "alpha=math.asin(math.sqrt(n1**2-n2**2)/n0); #acceptance angle in radians\n", "alpha=alpha*57.2957795; #converting radians to degrees\n", "alphaa=math.ceil(alpha*10**3)/10**3; #rounding off to 3 decimals\n", "deg=int(alpha); #converting to degrees\n", "t=60*(alpha-deg); \n", "mi=int(t); #converting to minutes\n", "sec=60*(t-mi); #converting to seconds\n", "sec=math.ceil(sec*10**2)/10**2; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"refractive index of the core is\",n_1);\n", "print(\"the acceptance angle of the fibre in degrees is\",alphaa);\n", "print(\"acceptance angle of the fibre is\",deg,\"degrees\",mi,\"minutes\",sec,\"seconds\");\n", "\n", "#answer for acceptance angle given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('refractive index of the core is', 1.55725)\n", "('the acceptance angle of the fibre in degrees is', 6.476)\n", "('acceptance angle of the fibre is', 6, 'degrees', 28, 'minutes', 32.55, 'seconds')\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.5, Page number 100" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "NA=0.26; #numerical aperture\n", "n1=1.5; #refractive index of core\n", "d=100; #core diameter in micro meter\n", "\n", "#Calculation\n", "d=100*(10**-6); #core diameter in metre\n", "n2=math.sqrt((n1**2)-(NA**2));\n", "n2=math.ceil(n2*10**5)/10**5; #rounding off to 5 decimals\n", "\n", "#Result\n", "print(\"refractive index of the cladding is\",n2);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('refractive index of the cladding is', 1.4773)\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 3.6, Page number 100" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "NA=0.26; #numerical aperture\n", "delta=0.015; #refractive index difference\n", "\n", "#Calculation\n", "#NA=math.sqrt(n1**2-n2**2)\n", "#let A=n1**2-n2**2\n", "#therefore A=NA**2\n", "A=NA**2;\n", "#delta=(n1**2-n2**2)/2*(n1**2)\n", "#let 2*(n1**2) be B\n", "#therefore B=A/delta\n", "B=A/delta;\n", "n1=math.sqrt(B/2);\n", "n1=math.ceil(n1*100)/100; #rounding off to 2 decimals\n", "n2=math.sqrt(n1**2-NA**2);\n", "n2=math.ceil(n2*10**3)/10**3; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"refractive index of the core is\",n1);\n", "print(\"refractive index of the cladding is\",n2);\n", "\n", "#answer for refractive index of cladding given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('refractive index of the core is', 1.51)\n", "('refractive index of the cladding is', 1.488)\n" ] } ], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }