{ "metadata": { "name": "", "signature": "sha256:86128ebcddc1aace30166722ef06d4489b2c11f53b2c59c5d439d37f83881533" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Laser" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.1, Page number 59 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "lamda=632.8*10**-9; #wavelength in m\n", "P=5*10**-3; #output power in W\n", "\n", "#Calculation\n", "E=(h*c)/lamda; #energy of one photon\n", "E_eV=E/(1.6*10**-19); #converting J to eV\n", "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", "N=P/E; #number of photons emitted\n", "\n", "\n", "#Result\n", "print(\"energy of one photon in eV is\",E_eV);\n", "print(\"number of photons emitted per second is\",N);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('energy of one photon in eV is', 1.964)\n", "('number of photons emitted per second is', 1.5917094275077976e+16)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.2, Page number 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "lamda=632.8*10**-9; #wavelength in m\n", "\n", "#Calculation\n", "E=(h*c)/lamda; #energy of one photon\n", "E_eV=E/(1.6*10**-19); #converting J to eV\n", "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"energy of one photon in eV is\",E_eV);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('energy of one photon in eV is', 1.964)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.3, Page number 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "E1=0; #value of 1st energy level in eV\n", "E2=1.4; #value of 2nd energy level in eV\n", "lamda=1.15*10**-6;\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "\n", "#Calculation\n", "E=(h*c)/lamda; #energy of one photon\n", "E_eV=E/(1.6*10**-19); #converting J to eV\n", "E3=E2+E_eV;\n", "E3=math.ceil(E3*100)/100; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"value of E3 in eV is\",E3);\n", "\n", "#answer given in the book for E3 is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('value of E3 in eV is', 2.49)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.4, Page number 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "E2=3.2; #value of higher energy level in eV\n", "E1=1.6; #value of lower energy level in eV\n", "\n", "#Calculation\n", "E=E2-E1; #energy difference in eV\n", "E_J=E*1.6*10**-19; #converting E from eV to J\n", "lamda=(h*c)/E_J; #wavelength of photon\n", "\n", "#Result\n", "print(\"energy difference in eV\",E);\n", "print(\"wavelength of photon in m\",lamda);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('energy difference in eV', 1.6)\n", "('wavelength of photon in m', 7.76484375e-07)\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.5, Page number 60" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "E=1.42*1.6*10**-19; #band gap of GaAs in J\n", "\n", "#Calculation\n", "lamda=(h*c)/E; #wavelength of laser\n", "\n", "#Result\n", "print(\"wavelength of laser emitted by GaAs in m\",lamda);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('wavelength of laser emitted by GaAs in m', 8.74911971830986e-07)\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.6, Page number 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "T=300; #temperature in K\n", "lamda=500*10**-9; #wavelength in m\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "k=1.38*10**-23;\n", "\n", "#Calculation\n", "#from maxwell and boltzmann law, relative population is given by\n", "#N1/N2=exp(-E1/kT)/exp(-E2/kT)\n", "#hence N1/N2=exp(-(E1-E2)/kT)=exp((h*new)/(k*T));\n", "#new=c/lambda\n", "R=(h*c)/(lamda*k*T);\n", "RP=math.exp(R);\n", "\n", "#Result\n", "print(\"relative population between N1 and N2 is\",RP);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('relative population between N1 and N2 is', 5.068255595981255e+41)\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.7, Page number 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "T=300; #temperature in K\n", "h=6.626*10**-34;\n", "c=3*10**8;\n", "k=1.38*10**-23;\n", "lamda=600*10**-9; #wavelength in m\n", "\n", "#Calculation\n", "R=(h*c)/(lamda*k*T);\n", "Rs=1/(math.exp(R)-1);\n", "\n", "#Result\n", "print(\"the ratio between stimulated emission to spontaneous emission is\",Rs);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('the ratio between stimulated emission to spontaneous emission is', 1.7617782449453023e-35)\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.8, Page number 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "P=5*10**-3; #output power in W\n", "I=10*10**-3; #current in A\n", "V=3*10**3; #voltage in V\n", "\n", "#Calculation\n", "e=(P*100)/(I*V);\n", "e=math.ceil(e*10**6)/10**6; #rounding off to 6 decimals\n", "\n", "#Result\n", "print(\"efficiency of laser in % is\",e);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('efficiency of laser in % is', 0.016667)\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.9, Page number 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "P=1e-03; #output power in W\n", "d=1e-06; #diameter in m\n", "\n", "#Calculation\n", "r=d/2; #radius in m\n", "I=P/(math.pi*r**2); #intensity\n", "I=I/10**9;\n", "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"intensity of laser in W/m^2 is\",I,\"*10**9\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('intensity of laser in W/m^2 is', 1.2733, '*10**9')\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 2.10, Page number 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda=632.8*10**-9; #wavelength in m\n", "D=5; #distance in m\n", "d=1*10**-3; #diameter in m\n", "\n", "#Calculation\n", "deltatheta=lamda/d; #angular speed\n", "delta_theta=deltatheta*10**4;\n", "r=D*deltatheta;\n", "r1=r*10**3; #converting r from m to mm\n", "A=math.pi*r**2; #area of the spread\n", "\n", "#Result \n", "print(\"angular speed in radian is\",delta_theta,\"*10**-4\");\n", "print(\"radius of the spread in mm is\",r1);\n", "print(\"area of the spread in m^2 is\",A);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('angular speed in radian is', 6.328, '*10**-4')\n", "('radius of the spread in mm is', 3.164)\n", "('area of the spread in m^2 is', 3.1450157329451454e-05)\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }