{ "metadata": { "name": "", "signature": "sha256:dbcb8c7a4d852e94c64ae36b37434de99bb1000ca8d8a481769813b464811eeb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ultrasonics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.1, Page number 28 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "t=0.15*10**-2; #thickness of the quartz crystal in m\n", "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", "rho=2650; #density of quartz in kg/m^3\n", "\n", "#Calculation\n", "x=math.sqrt(Y/rho);\n", "f=x/(2*t);\n", "f=f*10**-6; #converting f from Hz to MHz\n", "f=math.ceil(f*10**6)/10**6; #rounding off to 6 decimals\n", "\n", "#Result\n", "print(\"fundamental frequency of vibration in MHz is\",f);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('fundamental frequency of vibration in MHz is', 1.819992)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.2, Page number 28 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "t=1e-03; #thickness of the quartz crystal in m\n", "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", "rho=2650; #density of quartz in kg/m^3\n", "\n", "#Calculation\n", "x=math.sqrt(Y/rho);\n", "p1=1; #for fundamental frequency p=1\n", "f1=(p1*x)/(2*t);\n", "F1=f1/10**6;\n", "F1=math.ceil(F1*10**5)/10**5; #rounding off to 5 decimals\n", "f_1=f1*10**-6; #converting f1 from Hz to MHz\n", "f_1=math.ceil(f_1*10**5)/10**5; #rounding off to 5 decimals\n", "p2=2; #for first overtone p=2\n", "f2=(p2*x)/(2*t);\n", "F2=f2/10**6;\n", "F2=math.ceil(F2*10**5)/10**5; #rounding off to 5 decimals\n", "f_2=f2*10**-6; #converting f2 from Hz to MHz\n", "f_2=math.ceil(f_2*10**5)/10**5; #rounding off to 5 decimals\n", "\n", "#Result\n", "print(\"fundamental frequency in Hz is\",F1,\"*10**6\");\n", "print(\"fundamental frequency in MHz is\",f_1);\n", "print(\"frequency of the first overtone in Hz is\",F2,\"*10**6\");\n", "print(\"frequency of the first overtone in MHz is\",f_2);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('fundamental frequency in Hz is', 2.72999, '*10**6')\n", "('fundamental frequency in MHz is', 2.72999)\n", "('frequency of the first overtone in Hz is', 5.45998, '*10**6')\n", "('frequency of the first overtone in MHz is', 5.45998)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.3, Page number 29 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "lamda=589.3*10**-9; #wavelength of light in m\n", "f=100*10**6; #frequency of ultrasonic transducer in Hz\n", "n=1; #order of diffraction\n", "theta=2.25; #angle of diffraction in degrees\n", "theta=theta*0.0174532925; #converting degrees to radians\n", "\n", "#Calculation\n", "d=(n*lamda)/(2*math.sin(theta));\n", "d1=d*10**6; #converting d from m to micro m\n", "lamda1=2*d;\n", "v=f*lamda1;\n", "v=math.ceil(v*100)/100; #rounding off to 2 decimals\n", "\n", "#Result\n", "print(\"wavelength of ultrasonic wave in m is\",lamda1);\n", "print(\"velocity of ultrasonic wave in m/sec\",int(v));" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('wavelength of ultrasonic wave in m is', 1.5010258944908707e-05)\n", "('velocity of ultrasonic wave in m/sec', 1501)\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.4, Page number 29 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "f=2*10**6; #frequency of transducer in MHz\n", "v=3; #speed of blood in m/s\n", "c=800; #velocity of ultrasonic wave in m/s\n", "theta=30; #angle of inclination in degrees\n", "theta=theta*0.0174532925; #converting degrees to radians\n", "\n", "#Calculation\n", "deltaf=(2*f*v*math.cos(theta))/c;\n", "deltaf=deltaf*10**-6; #converting deltaf from Hz to MHz\n", "deltaf=math.ceil(deltaf*10**6)/10**6; #rounding off to 6 decimals\n", "\n", "#Result\n", "print(\"doppler shifted frequency in MHz is\",deltaf);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('doppler shifted frequency in MHz is', 0.012991)\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 1.5, Page number 30 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "Y=7.9*10**10; #young's modulus of quartz in N/m^2\n", "rho=2650; #density of quartz in kg/m^3\n", "\n", "#Calculation\n", "v=math.sqrt(Y/rho);\n", "v=math.ceil(v*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"velocity of ultrasonic waves in m/s is\",v);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('velocity of ultrasonic waves in m/s is', 5459.975)\n" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }