{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 20: X-Ray" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.1, Page 20.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "# Given \n", "V1 = 40e3 # voltage in first case in V\n", "V2 = 20e3 # voltage in second case in V\n", "V3 = 100e3 # voltage in second in V\n", "\n", "#Calculations\n", "v1 = 0.593e6 * sqrt(V1)\n", "lambda1 = 12400 / V1\n", "v2 = 0.593e6 * sqrt(V2)\n", "lambda2 = 12400 / V2\n", "v3 = 0.593e6 * sqrt(V3)\n", "lambda3 = 12400 / V3\n", "\n", "#Results\n", "print \"Max. speed of electrons at %d Volts is %.3e m/sec\\nMax. speed of electrons at %d Volts is %.2e m/sec/sec\\nMax. speed of electrons at %d Volts is %.3e m/sec\\nShortest wavelength of x-ray = %.2f A\\nShortest wavelength of x-ray = %.2f A\\nShortest wavelength of x-ray = %.3f A\"%(V1,v1,V2,v2,V3,v3,lambda1,lambda2,lambda3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Max. speed of electrons at 40000 Volts is 1.186e+08 m/sec\n", "Max. speed of electrons at 20000 Volts is 8.39e+07 m/sec/sec\n", "Max. speed of electrons at 100000 Volts is 1.875e+08 m/sec\n", "Shortest wavelength of x-ray = 0.31 A\n", "Shortest wavelength of x-ray = 0.62 A\n", "Shortest wavelength of x-ray = 0.124 A\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.2, Page 20.7\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "V = 30e3 # voltage in V\n", "lambda_min = 0.414e-10 # shortest wavelength in m\n", "e = 1.6e-19 # charge on an electron in C\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "h = (e * V * lambda_min) / c\n", "\n", "#Result\n", "print \"Planck constant is %.3e J sec\"%h" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Planck constant is 6.624e-34 J sec\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.3, Page 20.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "V = 25e3 # voltage in V\n", "\n", "#Calculations\n", "lambda_min = 12400 / V\n", "\n", "#Result\n", "print \"Minimum wavelength of x-ray is %.3f A\"%lambda_min" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum wavelength of x-ray is 0.496 A\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.4, Page 20.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "# Given \n", "V = 13.6e3 # voltage in V\n", "\n", "#Calculations\n", "v = 0.593e6*sqrt(V)\n", "\n", "#Result\n", "print \"Maximum speed of electron is %.2e m/sec\"%v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum speed of electron is 6.92e+07 m/sec\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.5, Page 20.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "# Given \n", "V = 10e3 # voltage in V\n", "i = 2e-3 # current in amp\n", "\n", "#Calculations\n", "v = 0.593e6*sqrt(V)\n", "\n", "#Result\n", "print \"Velocity of electron is %.2e m/sec\"%v" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity of electron is 5.93e+07 m/sec\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.6, Page 20.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given\n", "V = 9.8e3 # voltage in V\n", "i = 2e-3 # current in amp\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "lamda = 12400 / V\n", "f = c / (lamda*10**-10)\n", "\n", "#Results\n", "print \"Highest frequency is %.2e Hz\\nMinimum wavelength is %.2f A\"%(f,lamda)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Highest frequency is 2.37e+18 Hz\n", "Minimum wavelength is 1.27 A\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.7, Page 20.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "# Given \n", "V = 12.4e3 # voltage in V\n", "i = 2e-3 # current in amp\n", "e = 1.6e-19 # charge on an electron in C\n", "\n", "#Calculations\n", "n = i / e\n", "v = 0.593e6*sqrt(V)\n", "\n", "#Result\n", "print \"Number of electrons striking the target per sec is %.2e\\nSpeed of electrons is %.1e m/sec\"%(n,v)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of electrons striking the target per sec is 1.25e+16\n", "Speed of electrons is 6.6e+07 m/sec\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.8, Page 20.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "V = 10e3 # voltage in V\n", "i = 15e-3 # current in amp\n", "e = 1.6e-19 # charge on an electron in C\n", "\n", "#Calculations\n", "n = i / e\n", "lamda = 12400 / V \n", "\n", "#Results\n", "print \"Number of electrons striking the anode per sec is %.2e\\nMinimum wavelength produced is %.2f A\"%(n,lamda)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of electrons striking the anode per sec is 9.38e+16\n", "Minimum wavelength produced is 1.24 A\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.9, Page 20.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "V = 50e3 # voltage in V\n", "i = 1e-3 # current in amp\n", "e = 1.6e-19 # charge on an electron in C\n", "\n", "#Calculations\n", "n = i / e\n", "\n", "#Result\n", "print \"Number of electrons striking the anode per sec is %.2e\"%n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of electrons striking the anode per sec is 6.25e+15\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.10, Page 20.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "lambda1 = 40e-12 # minimum wavelength in first case in m\n", "lambda2 = 1e-10 # minimum wavelength in second case in m\n", "\n", "#Calculations\n", "V1 = 12400e-10 / lambda1\n", "V2 = 12400e-10 / lambda2\n", "\n", "#Results\n", "print \"Applied voltage to get wavelength of %.e meter is %.f KV\\nApplied voltage to get wavelength of %.e meter is %.1f KV\"%(lambda1,V1/10**3,lambda2,V2/10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applied voltage to get wavelength of 4e-11 meter is 31 KV\n", "Applied voltage to get wavelength of 1e-10 meter is 12.4 KV\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.11, Page 20.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "V1 = 44e3 # voltage in first case in V\n", "V2 = 50e3 # voltage in second case in V\n", "lambda1 = 0.284e-10 # shortest wavelength in first case in m\n", "lambda2 = 0.248e-10 # shortest wavelength in second case in m\n", "e = 1.6e-19 # charge on an electron in C\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "h1 = e * V1 * lambda1 / c\n", "h2 = e * V2 * lambda2 / c\n", "\n", "#Results\n", "print \"Planck constant is %.2e J sec if shortest wavelength is %.3e m \\nPlanck constant is %.3e Jsec if shortest wavelength is %.3e m \"%(h1,lambda1,h2,lambda2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Planck constant is 6.66e-34 J sec if shortest wavelength is 2.840e-11 m \n", "Planck constant is 6.613e-34 Jsec if shortest wavelength is 2.480e-11 m \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.12, Page 20.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "lamda = 1e-11 # K-absorption limit for uranium in m\n", "\n", "#Calculations\n", "V = 12400e-10 / lamda\n", "\n", "#Result\n", "print \"Excitation potential is %d kV\"%(V/10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Excitation potential is 124 kV\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.13, Page 20.11" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "lamda = 1.4e-11 # K-absorption edge for lead in m\n", "V = 88.6e3 # minimum voltage required for producing k-lines in V\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "r = V * lamda / c\n", "\n", "#Result\n", "print \"The value of the ratio of h/e = %.3e Jsec/C\"%r" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of the ratio of h/e = 4.135e-15 Jsec/C\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.14, Page 20.11" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "Z = 92 # atomic no. of atom\n", "Rh = 1.1e5 # Rydberg constant in cm^-1\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "lamda = 1 / (Rh *(Z-1)**2 * (1 - (1 / 2**2)))\n", "\n", "#Result\n", "print \"Wavelength of K line = %.2f A\"%(lamda*1e8)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of K line = 0.11 A\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.15, Page 20.11" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "Z = 42 # atomic no. of Mo\n", "lamda = 0.71e-10 # wavelength in m\n", "Z_ = 29 # atomic no. of Cu\n", "\n", "#Calculations\n", "lambda_ = (Z-1)**2 * lamda / (Z_-1)**2\n", "\n", "#Result\n", "print \"Wavelength of the corresponding radiation of Cu is %.2f A\"%(lambda_*1e10)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of the corresponding radiation of Cu is 1.52 A\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.16, Page 20.12" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "Z = 79 # atomic no. of element\n", "b = 1 # a constant\n", "a = 2.468e15 # a constant in per sec\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "f = a * (Z - b)**2\n", "lamda = c / f\n", "\n", "#Result\n", "print \"Wavelength of x-ray is %.4f A\"%(lamda*1e10)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of x-ray is 0.1998 A\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.17, Page 20.12" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "Z = 29 # atomic no. of Cu\n", "R = 1.097e7 # Rydberg constant in m^-1\n", "c = 3e8 # speed of light in m/sec\n", "h = 6.62e-34 # Planck constant in J sec\n", "\n", "#Calculations\n", "f = 3./4 * (R * c) * (Z-1)**2\n", "E = h * f / 1.6e-16\n", "E_L = 0.931 # let E_L = 0.931 KeV\n", "E_ = E + E_L\n", "\n", "#Result\n", "print \"Ionization potential of K-shell electron of Cu is %.3f keV\"%E_" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ionization potential of K-shell electron of Cu is 8.938 keV\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.18, Page 20.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "Z = 79 # atomic no. of anticathode\n", "R = 1.097e7 # Rydberg constant in m^-1\n", "c = 3e8 # speed of light in m/sec\n", "\n", "#Calculations\n", "f = 3./4 * (R * c) * (Z-1)**2\n", "\n", "#Result\n", "print \"Frequency of k line is %.3e Hz\"%f" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of k line is 1.502e+19 Hz\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 20.19, Page 20.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "Z = 27 # atomic no. of Co\n", "R = 1.097e7 # Rydberg constant in m^-1\n", "c = 3e8 # speed of light in m/sec\n", "h = 6.62e-34 # Planck constant in J sec\n", "\n", "#Calculations\n", "f = 3./4 * (R * c) * (Z-1)**2\n", "E = h * f\n", "lamda = c / f\n", "\n", "#Results\n", "print \"Energy is %.2f keV\\nWavelength of x-ray is %.2f A\"%(E / 1.6e-16,lamda*1e10)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy is 6.90 keV\n", "Wavelength of x-ray is 1.80 A\n" ] } ], "prompt_number": 24 } ], "metadata": {} } ] }