{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 19: Superconductivity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.1, Page 19.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Given \n", "T_c = 7.2 # critical temperature in K\n", "T = 5.1 # temperature in K\n", "lambda_ = 380 # penetration depth at 0 K in A\n", "\n", "#Calculations\n", "lamda = lambda_ * (1 - (T / T_c)**4)**(-1./2)\n", "\n", "#Result\n", "print \"Penetration depth is %.2f A\"%lamda" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Penetration depth is 439.30 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.2, Page 19.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "# Given \n", "Hc1 = 1.41e5 # first critical field at 14.1K\n", "Hc2 = 4.205e5 # second critical field at 12.9K \n", "T1 = 14.11 # temperature in K\n", "T2 = 12.9 # temperature in K \n", "T = 4.2 # temperature in K\n", "lambda_ = 380 # penetration depth at 0 K in A\n", "\n", "#Calculations\n", "Tc = sqrt((Hc2*T1**2 - Hc1*T2**2) / (Hc2 - Hc1))\n", "H_ = Hc1 / (1 - (T1 / Tc)**2)\n", "Hc = H_ * (1 - (T/Tc)**2)\n", "\n", "#Result\n", "print \"Transition temperature is %.2f K\\nCritical field at temperate at 4.2 k is %.2e A/m\"%(Tc,Hc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transition temperature is 14.68 K\n", "Critical field at temperate at 4.2 k is 1.69e+06 A/m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.3, Page 19.14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import *\n", "\n", "# Given \n", "d = 1e-3 # diameter of wire in m\n", "T1 = 4.2 # temperature in K\n", "T2 = 7.18 # temperature in K\n", "H_ = 6.51e4 # critical magnetic field at 0 K\n", "\n", "#Calculations\n", "r = d / 2\n", "Hc = H_ * (1 - (T1 / T2)**2)\n", "Jc = (2 * pi * r * Hc) / (pi * r**2)\n", "\n", "#Result\n", "print \"Critical current density is %.3e A/m^2\"%Jc" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical current density is 1.713e+08 A/m^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.4, Page 19.15" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "w = 199.5 # isotopic mass of Hg\n", "Tc = 4.186 # critical temperature in K \n", "w_ = 203.4 # increased isotope mass of Hg\n", "\n", "#Calculations\n", "Tc_ = Tc * (w / w_)**(1./2)\n", "\n", "#Result\n", "print \"Critical temperature is %.4f K\"%Tc_" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical temperature is 4.1457 K\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.5, Page 19.15" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "T_c = 4.2 # critical temperature in K\n", "T = 2.9 # temperature in K\n", "lamda = 57 # penetration depth at 2.9 K in nm\n", "\n", "#Calculations\n", "lambda_ = lamda * (1 - (T / T_c)**4)**(1./2)\n", "\n", "#Result\n", "print \"Penetration depth at 0 K is %.2f nm\"%lambda_" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Penetration depth at 0 K is 50.10 nm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.6, Page 19.15" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given\n", "T1 = 2.18 # temperature in first case in K\n", "lambda1 = 16 # penetration depth at 2.18 K in nm\n", "T2 = 8.1 # temperature in second case in K\n", "lambda2 = 96 # penetration depth at 8.1 K in nm\n", "\n", "#Calculations\n", "Tc = (((lambda2**2 * T2**4) - (T1**4 * lambda1**2)) / (lambda2**2 - lambda1**2))**(1./4)\n", "\n", "#Result\n", "print \"Critical temperature is %.2f K\"%Tc" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical temperature is 8.16 K\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.7, Page 19.16" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "w = 26.91 # isotopic mass of superconducting sample\n", "Tc = 1.19 # first critical temperature in K \n", "w_ = 32.13 # increased isotope mass of superconducting sample\n", "\n", "#Calculations\n", "Tc_ = Tc * (w / w_)**(1./2)\n", "\n", "#Result\n", "print \"Critical temperature is %.3f K\"%Tc_" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical temperature is 1.089 K\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 19.8, Page 19.16" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "# Given \n", "k = 1.38e-23 # Boltzmann's constant in J/K\n", "h = 6.62e-34 # Planck constant in J sec\n", "Tc = 4.2 # critical temperature of Hg in K\n", "c = 3e8 # speed of light in m/sec \n", "\n", "#Calculations\n", "E = 3 * k * Tc\n", "lamda = h * c / E\n", "\n", "#Result\n", "print \"Energy gap is %.2e eV\\nWavelength of photon is %.2e m\"%(E/1.6e-19,lamda)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy gap is 1.09e-03 eV\n", "Wavelength of photon is 1.14e-03 m\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }