{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#12: Superconducting Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.1, Page number 328" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The transition temperature for the isotope of mercury of mass number 200 is 4.2209 K\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "M1=202; #mass number of mercury\n", "a=0.50; #coefficient of mass number\n", "T1=4.2; #temperaturefor mass number 200(K)\n", "M2=200; #mass number of mercury\n", "\n", "#Calculation\n", "T2=((M1/M2)**a)*T1; #The transition temperature for the isotope of mercury of mass number 200(K)\n", "\n", "#Result\n", "print \"The transition temperature for the isotope of mercury of mass number 200 is\",round(T2,4),\"K\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.2, Page number 328" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The critical field is 0.1117 T\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Tc=9.15; #critical temperature of Nb(K)\n", "t=6; #temperature of critical field(K)\n", "Ho=0.196; #The critical field AT 0K(T)\n", "\n", "#Calculation\n", "Hc=(Ho*(1-(t/Tc)**2)); #The critical field at 6K(T)\n", "\n", "#Result\n", "print \"The critical field is\",round(Hc,4),\"T\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.3, Page number 329" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Isotopic mass if the critical temperature falls is 204.55\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "M1=199.5; #Isotopic mass of metal\n", "T1=4.185; #Critical temperature for a metal with isotopic mass(K)\n", "T2=4.133; #fall of critical temperature for a metal with isotopic mass(K)\n", "a=0.50; #coefficient of mass\n", "\n", "#Calculation\n", "M2=(((M1)**a)*(T1/T2))**2; #The Isotopic mass if the critical temperature falls to 4.133\n", "\n", "#Result\n", "print \"The Isotopic mass if the critical temperature falls is\",round(M2,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.4, Page number 329" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The critical current through a long thin superconductor is 22.619 A\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Hc=7.2*10**3; #The critical magnetic field(A/m)\n", "r=0.5*10**-3; #radius of long thin superconducting wire(m)\n", "\n", "#Calculation\n", "Ic=(2*math.pi*Hc*r); #The critical current through a long thin superconductor(A)\n", "\n", "#Result\n", "print \"The critical current through a long thin superconductor is\",round(Ic,3),\"A\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.5, Page number 329" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The critical field is 0.021659 tesla\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Tc=3.7; #critical temperature of superconducting Sn(K)\n", "t=2; #temperature of critical field(K)\n", "Ho=0.0306; #The critical field at 0K(T)\n", "\n", "#Calculation\n", "Hc=(Ho*(1-(t/Tc)**2)); #The critical field at 6K(T)\n", "\n", "#Result\n", "print \"The critical field is\",round(Hc,6),\"tesla\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.6, Page number 329" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The critical density for a superconducting wire of lead is 134.33 A\n", "answer varies due to rounding off errors\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Ho=6.5*10**4; #The critical field at 0K(A/m)\n", "Tc=7.18; #The temperature for lead(K)\n", "r=0.5*10**-3; #radius of superconducting wire of lead(m)\n", "T=4.2; #temperature of superconducting wire(K)\n", "\n", "#Calculation\n", "Hc=(Ho*(1-(T/Tc)**2)); #The critical field(KA/m)\n", "Ic=2*math.pi*Hc*r; #The critical density for a superconducting wire of lead(A)\n", "\n", "#Result\n", "print \"The critical density for a superconducting wire of lead is\",round(Ic,2),\"A\"\n", "print \"answer varies due to rounding off errors\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.7, Page number 330" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The critical temperature is 12.13395 K\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Hc=10**5; #The critical field for vanadium(A/m)\n", "Ho=2*10**5; #The critical field for vanadium at 0K(A/m)\n", "T=8.58; #temperature for vanadium(K)\n", "\n", "#Calculation\n", "Tc=T/math.sqrt(1-(Hc/Ho)); #The critical temperature(K)\n", "\n", "#Result\n", "print \"The critical temperature is\",round(Tc,5),\"K\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.8, Page number 338" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The frequency of the radiation emitted by the junction is 2.85196 *10**9 Hz\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=5.9*10**-6; #voltage applied across a Josephson junction(V)\n", "e=1.6*10**-19; #charge of electron(c)\n", "h=6.62*10**-34; #Planck's constant(J-sec)\n", "\n", "#Calculation\n", "v=(2*e*V)/h; #The frequency of the radiation emitted by the junction(Hz)\n", "\n", "#Result\n", "print \"The frequency of the radiation emitted by the junction is\",round(v/10**9,5),\"*10**9 Hz\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }