{ "metadata": { "name": "", "signature": "sha256:ecf05dc207884a73f4d33d07fdee310eee827214d9664476e0cf941cf4d4f512" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "11: Lasers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.1, Page number 249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h = 6.626*10**-34; #Planck's constant(Js)\n", "c = 3*10**8; #Speed of light in free space(m/s)\n", "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", "T = 300; #Temperature at absolute scale(K)\n", "lamda1 = 5500; #Wavelength of visible light(A)\n", "lamda2 = 10**-2; #Wavelength of microwave(m)\n", "\n", "#Calculation\n", "lamda1 = lamda1*10**-10; #Wavelength of visible light(m)\n", "rate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n", "\n", "#Result\n", "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n", "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n", "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.2, Page number 250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", "h = 6.626*10**-34; #Planck's constant(Js)\n", "c = 3*10**8; #Speed of light in free space(m/s)\n", "lamda = 690; #Wavelength of laser light(nm)\n", "E_lower = 30.5; #Energy of lower state(eV)\n", "\n", "#Calculation\n", "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", "E = h*c/lamda; #Energy of the laser light(J)\n", "E = E/e; #Energy of the laser light(eV)\n", "E_ex = E_lower + E; #Energy of excited state of laser system(eV)\n", "E_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n", "\n", "#Result\n", "print \"The energy of excited state of laser system is\",E_ex, \"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy of excited state of laser system is 32.31 eV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.3, Page number 250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "import numpy as np\n", "\n", "#Variable declaration\n", "h = 6.626*10**-34; #Planck's constant(Js)\n", "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", "\n", "#Calculation\n", "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n", "#f/T = log(2)*k/h = A\n", "A = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\n", "A = A/10**10;\n", "A = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n", "\n", "#Result\n", "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.4, Page number 250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda = 500; #Wavelength of laser light(nm)\n", "f = 15; #Focal length of the lens(cm)\n", "d = 2; #Diameter of the aperture of source(cm)\n", "P = 5; #Power of the laser(mW)\n", "\n", "#Calculation\n", "P = P*10**-3; #Power of the laser(W)\n", "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", "d = d*10**-2; #Diameter of the aperture of source(m)\n", "f = f*10**-2; #Focal length of the lens(m)\n", "a = d/2; #Radius of the aperture of source(m)\n", "A = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\n", "I = P/A; #Intensity at the focus(W/m**2)\n", "I = I/10**7;\n", "I = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n", "\n", "#Result\n", "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n", "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n", "The intensity at the focus is 2.8295 *10**7 W/m**2\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.5, Page number 251" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h = 6.626*10**-34; #Planck's constant(Js)\n", "c = 3*10**8; #Speed of light in free space(m/s)\n", "lamda = 1064; #Wavelength of laser light(nm)\n", "P = 0.8; #Average power output per laser pulse(W)\n", "dt = 25; #Pulse width of laser(ms)\n", "\n", "#Calculation\n", "dt = dt*10**-3; #Pulse width of laser(s)\n", "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", "E = P*dt; #Energy released per pulse(J)\n", "E1 = E*10**3;\n", "N = E/(h*c/lamda); #Number of photons in a pulse\n", "\n", "#Result\n", "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n", "print \"The number of photons in a pulse is\", N\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy released per pulse is 20.0 *10**-3 J\n", "The number of photons in a pulse is 1.07053023443e+17\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 11.6, Page number 251" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "lamda = 693; #Wavelength of laser beam(nm)\n", "D = 3; #Diameter of laser beam(mm)\n", "d = 300; #Height of a satellite above the surface of earth(km)\n", "\n", "#Calculation\n", "D = D*10**-3; #Diameter of laser beam(m)\n", "lamda = lamda*10**-9; #Wavelength of laser beam(m)\n", "d = d*10**3; #Height of a satellite above the surface of earth(m)\n", "d_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\n", "dtheta = d_theta*10**4;\n", "dtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\n", "a = d_theta*d; #Diameter of the beam on the satellite(m)\n", "a = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n", "\n", "#Result\n", "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n", "print \"The diameter of the beam on the satellite is\",a, \"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n", "The diameter of the beam on the satellite is 84.6 m\n" ] } ], "prompt_number": 25 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }