{ "metadata": { "name": "Chapter1(s)" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": "Chapter 1: Ultrasonics" }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 1, Page No:1.29" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable declaration\nP = 1; # for fundamental mode\nt = 0.1*10**-2; # thickness of piezo electric crystal\nE = 80*10**9 # young's modulus\np = 2654 # density in kg/m^3\n\n# Calculations\n\nf = (P/(2*t))*math.sqrt(E/p); # frequency of the oscillator circuit\n\n# Result\nprint 'The Frequency of the oscillator circuit %3.4g' %f,'Hz';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The Frequency of the oscillator circuit 2.745e+06 Hz\n" } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 2, Page No:1.29" }, { "cell_type": "code", "collapsed": false, "input": "import math\n# variable declaration\nP = 1; # for fundamental mode\nt = 0.1*10**-2; # thickness of piezo electric crystal\nE = 7.9*10**10 # young's modulus\np = 2650 # density in kg/m^3\n\n# Calculations\n\nf = (P/(2*t))*math.sqrt(E/p); # frequency of the oscillator circuit\n\n#Result\nprint 'The Frequency of the vibrating crystal %0.2f'%(f/(10**6)),'MHz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The Frequency of the vibrating crystal 2.73 MHz\n" } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 3, Page No:1.30" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# variable Declaration\nf = 1.5*10**6; # frequency of ultrasonics in Hz\nd6 = 2.75*10**-3; # distance between 6 consecutive nodes\n\n# Calculations\nd = d6/5; # distance b/w two nodes\nlamda = 2*d; # wavelength in m\nv = f*lamda; # velocity of ultrasonics\n\n# Result\nprint 'Velocity of ultrasonics ' ,v,'m/sec';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Velocity of ultrasonics 1650.0 m/sec\n" } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Add_example 1, Page No: 1.31" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# Variable Declaration\nP = 1; # for fundamental mode\nt = 1.5*10**-3; # thickness of quartz crystal\nE = 7.9*10**10 # young's modulus in N/m^2\np = 2650 # density in kg/m^3\n\n# Calculations\n\nf = (P/(2*t))*math.sqrt(E/p); # frequency of the oscillator circuit\n\n# Result\nprint 'The Fundamental Frequency of the Quartz crystal %3.2f'%(f/10**6), 'MHz';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The Fundamental Frequency of the Quartz crystal 1.82 MHz\n" } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Add_example 2, Page No: 1.31" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# Variable Declaration\nv = 5000; # velocity of ultrasonics in m/s\ndf = 60*10**3; # difference b/w two adjacent harmonic freq. in Hz\n\n# Calculations\n\nd = (float(v)/(2*df)) ; # thickness of steel plate\n\n# Result\nprint 'The thickness of steel plate %3.4f'%(d),'m';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "The thickness of steel plate 0.0417 m\n" } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Add_example 3, Page No: 1.32" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# Variable Declaration\nv = 1440; # velocity of ultrasonics in sea water in m/s\nt = 0.33 # time taken b/w tx and rx in sec\n\n# Calculations\n\nd = v*t; # distance travelled by ultrasonics\nD = d/2; # depth of submerged submarine in m\n\n# Result\nprint 'Depth of submerged submarine',D,'m';\n", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Depth of submerged submarine 237.6 m\n" } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Add_example 4, Page No: 1.33" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# Variable Declaration\nd = 0.55*10**-3; # distance b/w two antinodes\nf = 1.5*10**6; # freq of the crystal\n\n# Calculations\n\nlamda = 2*d; # wavelength\nv = f*lamda; # velocity of ultronics\n\n# Result\nprint 'Velocity of waves in sea water',v,'m/s';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Velocity of waves in sea water 1650.0 m/s\n" } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Add_example 5, Page No: 1.33\n" }, { "cell_type": "code", "collapsed": false, "input": "import math\n\n# Variable Declaration\nP = 1; # for fundamental mode\np = 2660 # density of quartz in kg/m^3\nf = 1300*10**3 # freq of quartz plate for sub division ii\nk = 2.87*10**3\n\n#f1 = (k)/t # freq for sub division i\n\n# Calculations\n\n#f = (P/(2*t))*sqrt(E/p); \nE = p*4*(k)**2; # Youngs modulus in N/m^2\nt = (float(P)/(2*f))*math.sqrt(E/p); \n\n\n# Result\nprint 'Youngs modulus of quartz plate %3.5g'%E,'Nm^-2'\nprint 'Thickness of the crystal %.4e'%t,'m';", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Youngs modulus of quartz plate 8.7641e+10 Nm^-2\nThickness of the crystal 2.2077e-03 m\n" } ], "prompt_number": 15 } ], "metadata": {} } ] }