{ "metadata": { "name": "", "signature": "sha256:86b34c03ecd694cc6fe84dc92f4325da00a13eaa92d01bb08d6c810b7af3b7f3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter3:DIELECTRIC PROPERTIES OF MATERIALS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg1:pg-119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Eg=6.0 #dielectric constant of glass plate\n", "dg=0.25 #thickness of glass plate in mm\n", "Ep=3.0 #dielectric constant of plastic film\n", "dp=0.1 #thickness of plastic film in mm\n", "Eo=8.85e-12 #permittivity of free space in F/m \n", "A=1 #let surface area be 1\n", "Cg=Eg*Eo*A/dg\n", "Cp=Ep*Eo*A/dp\n", "ratio=Cg/Cp\n", "print\"Cg = \",ratio,\"Cp\"\n", "print\"Since Cp>Cg,the plastic film filled capacitor holds more charge than the glass plate filled capacitor\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Cg = 0.8 Cp\n", "Since Cp>Cg,the plastic film filled capacitor holds more charge than the glass plate filled capacitor\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg2:pg-120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Er=2.8 #dielectric constant of a dielectric material\n", "D=3e-8 #magnitude of electric displacement vector in C/m**2\n", "p=(Er-1)*D/Er\n", "print\"Polarization is \",round(p,10),\"C/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Polarization is 1.93e-08 C/m**2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg3:pg-120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "E=1000 #electric field in V/m\n", "p=4.3e-8 #polarization in C/m**2\n", "Eo=8.85e-12#permittivity of free space in F/m \n", "Er=1+(p/(Eo*E))\n", "print\"Relative permittivity of NaCl is \",round(Er,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relative permittivity of NaCl is 5.86\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg4:pg-120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Er=1.000074 #dielectric constant of helium \n", "Eo=8.85e-12 #permittivity of free space in F/m (in book F/m2 is printed which is wrong)\n", "E=100 #electric field in V/m\n", "Na=6e23 #Avogadro number\n", "V=22.4 #volume occupied by 1gm atom of gas at NTP in litres\n", "N=Na/(V*1e-3)\n", "p=Eo*(Er-1)*E\n", "P=p/N\n", "print\"Induced dipole moment is \",round(P,42),\"Cm\"#answer in book is in different form as 24.42e-40 Cm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Induced dipole moment is 2.445e-39 Cm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg5:pg-121" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Epsilon=1.46e-10 #permittivity of diamond in C**2/Nm**2\n", "Eo=8.86e-12 #permittivity of free space in C**2/Nm**2\n", "Er=Epsilon/Eo \n", "X=Eo*(Er-1)\n", "print\"Dielectric constant is \",round(Er,2)\n", "print\"Electrical susceptibility is \",round(X,12),\"C**2/Nm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dielectric constant is 16.48\n", "Electrical susceptibility is 1.37e-10 C**2/Nm**2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg6:pg-121" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Xe=35.4e-12 #electrical susceptibility in C**2/Nm**2\n", "Eo=8.85e-12 #permittivity of free space in C**2/Nm**2 \n", "K=1+(Xe/Eo)\n", "Epsilon=Eo*K\n", "print\"Dielectric constant is \",int(K)\n", "print\"Permittivity of the material is \",Epsilon,\"C**2/Nm**2\"\n", "#answer in book is in different form as 44.25e-12 C**2/Nm**2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dielectric constant is 5\n", "Permittivity of the material is 4.425e-11 C**2/Nm**2\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg7:pg-121" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Vo=60 #applied potential difference in volt\n", "V=30 #reduced potential difference in volt\n", "K=Vo/V\n", "print\"Dielectric constant of the liquid is \",K" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dielectric constant of the liquid is 2\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg8:pg-121" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Vo=100 #potential difference in volts\n", "t=0.3 #thickness of insulator in cm\n", "A=100 #area in cm**2\n", "d=1 #separation between plates in cm\n", "K=7 #dielectric constant \n", "Eo=8.9e-12 #permittivity of free space in C**2/Nm**2\n", "E_o=Vo/(d*1e-2)\n", "E=E_o/K\n", "D=K*Eo*E\n", "p=(K-1)*Eo*E\n", "print\"E = \",\"{:.2e}\".format(E),\"Volt/m\"\n", "print\"D = \",D,\"C/m**2\"\n", "print\"p = \",round(p,9),\"C/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "E = 1.43e+03 Volt/m\n", "D = 8.9e-08 C/m**2\n", "p = 7.6e-08 C/m**2\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg9:pg-122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "E=6e4 #electric field in V/m\n", "K=1.000134 #dielectric constant of neon\n", "Eo=8.9e-12 #permittivity of free space in F/m\n", "Na=6e23 #Avogadro number\n", "V=22.4 #volume occupied by 1gm atom of gas at NTP in litres\n", "p=Eo*(K-1)*E\n", "N=Na/(V*1e-3)\n", "P=p/N\n", "alpha=P/(Eo*E)\n", "print\"Induced dipole moment is\",round(P,38),\"Cm\"\n", "print\"Atomic polarizability of neon is \",round(alpha,32),\"m**3\"\n", "#answer in book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Induced dipole moment is 2.67e-36 Cm\n", "Atomic polarizability of neon is 5e-30 m**3\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg11:pg-123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Er=1.0024 #dielectric constant of argon atom\n", "N=2.7e25 #number of atoms per cubic meter\n", "Eo=8.85e-12 #permittivity of free space in F/m\n", "alpha_e=Eo*(Er-1)/N\n", "print\"Electronic polarizability is \",round(alpha_e,41),\"Fm**2\"\n", "#answer is wrong in book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electronic polarizability is 7.9e-40 Fm**2\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg12:pg-123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "N=9.8e26 #number of atoms in volume of one cubic meter of hydrogen gas\n", "Eo=8.85e-12 #permittivity of free space in F/m\n", "ao=0.53e-10 #radius of hydrogen atom in meter\n", "alpha=4*math.pi*Eo*ao**3\n", "Er=1+(4*math.pi*N*ao**3)\n", "print\"Polarizability is \",round(alpha,43),\"Fm**2\"\n", "print\"Relative permittivity is \",round(Er,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Polarizability is 1.66e-41 Fm**2\n", "Relative permittivity is 1.0018\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg13:pg-124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "alpha_300=2.5e-39 # total polarizability in C**2m/N at 300 K\n", "alpha_400=2.0e-39 # total polarizability in C**2m/N at 400 K\n", "T1 =300 # temperature in Kelvin\n", "T2 =400 # temperature in Kelvin\n", "beta=(alpha_300-alpha_400)*(T1*T2/(T2-T1))\n", "alpha_def_300=alpha_300 - beta/300\n", "alpha_oriant_300=beta/300\n", "alpha_oriant_400=beta/400\n", "print\"Deformational Polarizability is \",alpha_def_300,\"C**2mN**-1\"\n", "print\"Orientational Polarizability at %d K is \"%T1,alpha_oriant_300,\"C**2mN**-1\"\n", "print\"Orientational Polarizability at %d K is \"%T2,alpha_oriant_400,\"C**2mN**-1\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Deformational Polarizability is 5e-40 C**2mN**-1\n", "Orientational Polarizability at 300 K is 2e-39 C**2mN**-1\n", "Orientational Polarizability at 400 K is 1.5e-39 C**2mN**-1\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg14:pg-132" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "m=32 # Atomic weight of sulphur\n", "d=2.08 # Density in g/cm**3\n", "alpha_e=3.28e-40 # Electronic polarizability in Fm**2\n", "Na=6.023e23 # Avogadro Number\n", "Eo=8.85e-12 # Permittivity of free space in F/m\n", "N=Na*d*1e6/m \n", "k=N*alpha_e/(3*Eo)\n", "epsilon_r = (1+ k*2)/(1-k)# Calculation of relative permittivity\n", "print\"Relative dielectric constant is \",round(epsilon_r,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relative dielectric constant is 3.8\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg15:pg-132" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "n=1.5 # Refractive index\n", "Er=5.6 # Static dielectric constant\n", "per=(1-((n**2-1)/(n**2+2))*(Er+2)/(Er-1))*100 # Pecentage of ionic polarizability\n", "print\"Percentage of ionic polarizability is \",round(per,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage of ionic polarizability is 51.4 %\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg16:pg-133" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "n=math.sqrt(2.69) # Refractive index\n", "Er=4.94 # Static dielectric constant\n", "k1=(Er-1)/(Er+2)\n", "k2=(n**2-1)/(n**2+2)\n", "ratio=1/round(((k1/k2)-1),3) \n", "print\"Ratio of electronic to ionic polarizability is \",round(ratio,3)\n", "#in book ai/ae is mentioned instead of ae/ai in final answer which is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of electronic to ionic polarizability is 1.736\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg17:pg-133" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "Er=6.75 #dielectric constant of glass\n", "n=1.5 #refractive index of glass\n", "f=1e9 #frequency in Hz\n", "per=(Er-n**2)*100/(Er-1)\n", "print\"Percentage attributed to ionic polarizability is \",round(per,1),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage attributed to ionic polarizability is 78.3 %\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg18:pg-142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "t=5.5e-3 #thickness of quartz crystal plate in meter\n", "p=2.65e3 #density of quartz crystal in Kg/m**3\n", "Y=8e10 #Young's modulus of quartz in N/m**2 (value is wrong in question in book)\n", "m=1 \n", "f=m*math.sqrt(Y/p)/(2*t)\n", "print\"Frequency is \",int(f*1e-3),\"KHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency is 499 KHz\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg19:pg-148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "Er=4.36 #real part of dielectric constant of bakelite\n", "N=4e28 #number of atoms per cubic meter\n", "tan_d=2.8e-2#loss tangent at 1 MHz freuqency\n", "Eo=8.853e-12#permittivity of free space in F/m\n", "alpha=(3*Eo/N)*(Er*(1-(1j*tan_d))-1)/(Er*(1-(1j*tan_d))+2)\n", "x=round(alpha.real*1e40,1)\n", "y=round(alpha.imag*1e40,2)\n", "alpha=complex(x,y)\n", "print\"Complex polarizability is \",alpha*1e-40,\"Fm**2\"\n", "#in book answer is in different form and as (3.5-0.06i)*10**-40\n", "#in book unit of answer is not mentioned" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Complex polarizability is (3.5e-40-6e-42j) Fm**2\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg20:pg-149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "t=18e-6 # Relaxation time in second\n", "Er_d=1 # let real part of dielectric constant be 1\n", "Er_dd=1 # let imaginary part of dielectric constant be 1\n", "f=1/(2*math.pi*t) # Calculation of frequency\n", "delta=math.atan(Er_dd/Er_d)\n", "phi=90-(delta*180/math.pi) # Calculation of phase difference\n", "print\"Frequency is \",round(f/1e3,1),\"KHz\"\n", "print\"Phase difference between current and voltage is %d degree\"%(phi)\n", "print\"Current leads the voltage \"#this part is not mentioned in answer in book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency is 8.8 KHz\n", "Phase difference between current and voltage is 45 degree\n", "Current leads the voltage \n" ] } ], "prompt_number": 27 } ], "metadata": {} } ] }