{ "metadata": { "name": "", "signature": "sha256:6f9fd448718bc5e88c3775b99e3a7cc7745b7bbf33f8a54ff8af4c9ae6e09d6e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2:X-RAY DIFFRACTION" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg1:pg-70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "V=25*10**3 #potential difference in Volt\n", "h=6.63*10**-34 #planck constant in joule-sec\n", "c=3*10**8 #speed of light in m/sec\n", "e=1.6*10**-19 #charge of electron in coulomb\n", "theta=radians(15.8) #glancing angle for NaCl crystal for CuKa line\n", "d=2.82 #for NaCl\n", "lamda=2*d*sin(theta) \n", "print \"wavelength of CuKa line=\",round(lamda,4),\"Angstrom\"\n", "lamda_min=(h*c/(e*V))*10**10\n", "print \"wavelength of X-Ray photon at shortest limit=\",round(lamda_min,4),\"Angstrom\"\n", "theta_1=degrees(math.asin(lamda_min/(2*d)))\n", "print \"glancing angle for photons at the shortest wavelength limit=\",round(theta_1,2),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of CuKa line= 1.5357 Angstrom\n", "wavelength of X-Ray photon at shortest limit= 0.4972 Angstrom\n", "glancing angle for photons at the shortest wavelength limit= 5.06 degree\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg2:pg-70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "theta=radians(30) #glancing angle in radians\n", "d=1.87 #spacing between lattice planes in angstrom\n", "n=2 #for second order reflection\n", "lamda=2*d*sin(theta)/n\n", "print \"wavelength of X-Rays=\",lamda,\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of X-Rays= 0.935 Angstrom\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg3:pg-70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "lamda=0.36*10**-8 #wavelength in cm\n", "theta=radians(4.8)#glancing angle in radians\n", "n=1 #for first order diffraction\n", "d=n*lamda/(2*sin(theta))\n", "print \"interplanar separation of atomic planes in crystal=\",\"{:.2e}\".format(d),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "interplanar separation of atomic planes in crystal= 2.15e-08 cm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg4:pg-71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "lamda=2.6*10**-10 #wavelength in meter\n", "theta=radians(20) #in radians\n", "n=2 #for second order diffraction\n", "d=n*lamda/(2*sin(theta))\n", "print \"spacing constant of the crystal=\",round(d*10**10,2),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "spacing constant of the crystal= 7.6 Angstrom\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg5:pg-71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "d=2.82*10**-10 #spacing in meter\n", "n=2 #for second order\n", "sin_theta=1 #maximum value of sin(theta)\n", "lamda_max=2*d*sin_theta/n\n", "print \"longest wavelength=\",lamda_max*10**10,\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "longest wavelength= 2.82 Angstrom\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg6:pg-71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "lamda=0.842 #wavelength in angstrom\n", "theta_1=8+(35./60) #1' = (1/60)\u00ba = 0.01666667\u00ba\n", "theta_3=math.asin(round(3*sin(radians(theta_1)),2))\n", "print \"glancing angle for 3rd order reflection=\",round(math.degrees(theta_3),1),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "glancing angle for 3rd order reflection= 26.7 degree\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg7:pg-71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "lamda=0.97 #wavelength of first X-ray beam in angstrom\n", "theta=radians(60) #angle of reflection in radians\n", "n=3 #for third order reflection\n", "d=n*lamda/(2*sin(theta))\n", "n_1=1 #for first order reflection\n", "theta_1=radians(30) #angle of reflection in radians\n", "lamda_1=2*d*sin(theta_1)\n", "print \"wavelength of the second X-ray beam=\",round(lamda_1,2),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of the second X-ray beam= 1.68 Angstrom\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg8:pg-72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "lamda=0.30 #wavelength in angstrom\n", "d=0.5 #lattice spacing in angstrom\n", "n=2 #for second order diffraction\n", "theta=math.asin(n*lamda/(2*d))\n", "print \"For second order maxima, angle=\",round(math.degrees(theta),2),\"degree\"\n", "n=3 #for third order diffraction\n", "theta=math.asin(n*lamda/(2*d))\n", "print \"For third order maxima, angle=\",round(math.degrees(theta),2),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For second order maxima, angle= 36.87 degree\n", "For third order maxima, angle= 64.16 degree\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg9:pg-72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "d=2.82*10**-8 #lattice spacing in cm \n", "c=3*10**10 #speed of light in cm/sec\n", "e=1.6*10**-19 #charge on electron in coulomb\n", "v=9045 #voltage in volt\n", "theta=radians(14)#angle in radians\n", "n=1 #first order\n", "lamda=2*d*sin(theta)/n\n", "h=(e*v*lamda/c)*10**7 #since 1 joule=10**7 erg\n", "print \"h=\",\"{:.2e}\".format(h),\"erg-sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "h= 6.58e-27 erg-sec\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg10:pg-72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "do=2.82 #lattice spacing in angstrom\n", "theta=radians(10) #angle in radians\n", "lamda=2*do*round(sin(theta),4)\n", "print \"wavelength=\",round(lamda,4),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength= 0.9791 Angstrom\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg11:pg-72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "d=0.4086*10**-10 #lattice spacing in meter\n", "h=6.6*10**-34 #planck constant in joule-sec\n", "m=9.1*10**-31 #mass of electron in Kg\n", "n=1 #first order\n", "theta=radians(65) #glancing angle in radians\n", "lamda=2*d*sin(theta)/n\n", "print \"wavelength=\",\"{:.3e}\".format(lamda),\"m\"\n", "v=h/(m*lamda)\n", "print \"velocity of electron=\",\"{:.3e}\".format(v),\"m/sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength= 7.406e-11 m\n", "velocity of electron= 9.793e+06 m/sec\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg12:pg-73" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h=6.62*10**-34 #planck constant in joule-sec\n", "e=1.6*10**-19 #charge on electron in coulomb\n", "m=9*10**-31 #mass of electron in Kg\n", "v=344 #voltage in volt\n", "n=1 #first order\n", "theta=radians(60)#glancing angle in radians\n", "lamda=h/sqrt(2*m*e*v)\n", "d=n*lamda/(2*sin(theta))\n", "print \"spacing of the crystal=\",round(d*10**10,2),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "spacing of the crystal= 0.38 Angstrom\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg13:pg-73" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#given that\n", "lamda=1.32*10**-10 #wavelength in meter\n", "theta_deg=9 #angle fraction in degree\n", "theta_min=30 #angle fraction in minute\n", "theta =theta_deg+(theta_min/60.) # Total angle\n", "for n in range(1,5):\n", " d = lamda/(n*2*math.sin(theta*math.pi/180)) # Inter layer spacing\n", " print \"If order is %d then spacing is\"%(n),\"{:.2e}\".format(d),\"meter\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "If order is 1 then spacing is 4.00e-10 meter\n", "If order is 2 then spacing is 2.00e-10 meter\n", "If order is 3 then spacing is 1.33e-10 meter\n", "If order is 4 then spacing is 1.00e-10 meter\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg14:pg-74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "# given that\n", "theta1_deg = 5 # Absolut degree part of angle for first angle\n", "theta1_min = 23# remainder minute part of angle for first angle\n", "theta2_deg = 7 # Absolut degree part of angle for second angle\n", "theta2_min = 37# remainder minute part of angle for second angle\n", "theta3_deg = 9 # Absolut degree part of angle for third angle\n", "theta3_min = 22# remainder minute part of angle for third angle\n", "\n", "val1 = math.sin((theta1_deg+ theta1_min/60.)*math.pi/180)# Sin value for first angle\n", "val2 = math.sin((theta2_deg+ theta2_min/60.)*math.pi/180) #Sin value for second angle\n", "val3 = math.sin((theta3_deg+ theta3_min/60.)*math.pi/180)#Sin value for third angle\n", "ratio_21 = val2/val1\n", "ratio_31 = val3/val1\n", "print \"Interatomic layer separation ratios in crystal are as 1 : %f : %f\"%(ratio_21,ratio_31)\n", "print \"Above relation shows that crystal has a simple cubic crystal structure.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Interatomic layer separation ratios in crystal are as 1 : 1.412775 : 1.734750\n", "Above relation shows that crystal has a simple cubic crystal structure.\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg15:pg-82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.63*10**-34 #planck constant in joule-sec\n", "c=3*10**8 #speed of light in m/sec\n", "mo=9.1*10**-31 #mass of electron in Kg\n", "theta=radians(180)#scattering angle in radians\n", "d_lamda=h*(1-math.cos(theta))/(mo*c)\n", "print \"change in wavelength of photon=\",round(d_lamda*10**10,4),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "change in wavelength of photon= 0.0486 Angstrom\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg16:pg-82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#given that\n", "E=100. # Energy of X ray beam in KeV\n", "theta=30 # Scattering angle in degree\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # Speed of light in m/s\n", "E_rest=(mo*c**2)/(1.6e-19*1e3) # Rest mass energy in KeV\n", "k=(1/E)+ ((1-math.cos(radians(theta)))/(E_rest))\n", "k=int(k*10000)*10**-4\n", "del_e=E-1/k # Energy of recoiled electron\n", "print \"Energy of recoiled electrons is \",round(del_e,2),\"KeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of recoiled electrons is 1.96 KeV\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg17:pg-82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#given that\n", "lamda=1 # wavelength in angstrom\n", "h=6.63*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=90 # scattering angle in degree\n", "d_lambda=h*(1-math.cos(radians(90)))/(mo*c) # calculation of compton shift \n", "print \"compton shift is \",round(d_lambda*1e10,4),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "compton shift is 0.0243 Angstrom\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg18:pg-83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#given that\n", "lamda=0.015 #wavelength in angstrom\n", "h=6.63*10**-34 #Planks constant in joule-sec\n", "mo=9.1*10**-31 #mass of electron in kg\n", "c=3*10**8 #speed of light in m/sec\n", "theta=60 #scattering angle in degree\n", "d_lambda=h*(1-math.cos(theta*math.pi/180))*1e10/(mo*c) \n", "lambda_n=lamda+d_lambda\n", "print \"Wavelength of the scattered X-ray is \",round(lambda_n,3),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of the scattered X-ray is 0.027 Angstrom\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg19:pg-83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#given that\n", "lamda=1 # wavelength in angstrom\n", "h=6.63*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=90 # scattering angle in degree\n", "d_lambda= h*(1-math.cos(radians(90)))*1e10/(mo*c) # calculation of wavelength shift in angstrom\n", "lambda_n=lamda+d_lambda # Calculation of wavelength of scattered beam in angstrom\n", "K_E=h*c*(lambda_n-lamda)*1e10/(1.6e-19*lambda_n*lamda)# Calculation of K.E of recoiled electron in eV\n", "phi=math.atan(round((lamda/lambda_n),2))# calculation of Direction of the recoiled electron\n", "print \"Wavelength of the scattered beam is \",round(lambda_n,4),\"Angstrom\"\n", "print \"Kinetic Energy imparted to the recoiled electron is \",round(K_E),\"eV\"\n", "print \"Direction of the recoiled electron is \",round(degrees(phi),1),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of the scattered beam is 1.0243 Angstrom\n", "Kinetic Energy imparted to the recoiled electron is 295.0 eV\n", "Direction of the recoiled electron is 44.4 degree\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg20:pg-84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#given that\n", "lamda=1 # wavelength in angstrom\n", "h=6.63*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=90 # scattering angle in degree\n", "d_lambda= h*(1-math.cos(radians(90)))*1e10/(mo*c) # calculation of compton shift in angstrom\n", "lambda_n=lamda+d_lambda # Calculation of wavelength of scattered beam in angstrom\n", "K_E=h*c*(lambda_n-lamda)*1e10/(1.6e-19*lambda_n*lamda)# Calculation of K.E of recoiled electron in eV\n", "print \"Compton shift is \",round(d_lambda,4),\"Angstrom\"\n", "print \"Kinetic Energy imparted to the recoiled electron is \",round(K_E),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Compton shift is 0.0243 Angstrom\n", "Kinetic Energy imparted to the recoiled electron is 295.0 eV\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg21:pg-84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.63*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "E=0.88*10**6 #energy of gamma-rays in eV\n", "theta=180 #scattering angle in degree for maximum energy of recoiled electron\n", "lamda=h*c*10**10/(E*1.6*10**-19)\n", "d_lamda_max=h*(1-math.cos(radians(theta)))*1e10/(mo*c)\n", "lamda_n=lamda+d_lamda_max\n", "K_E_max=h*c*d_lamda_max*1e10/(1.6e-19*lamda_n*lamda)\n", "print \"Maximum energy of compton recoil electrons is \",round(K_E_max*10**-6,3),\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum energy of compton recoil electrons is 0.682 MeV\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg22:pg-85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.62*10**-34 # Planck's constant in joule-sec\n", "mo=9.0*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=90 # scattering angle in degree \n", "lamda=h*(1-math.cos(radians(theta)))*1e10/(mo*c)\n", "d_lamda=lamda # compton shift \n", "E=h*c/(round(lamda,4)*1e-10)\n", "print \"Wavelength of incident photon is \",round(lamda,4),\"Angstrom\"\n", "print \"Energy of incident photon is \",\"{:.3e}\".format(E),\"joule\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of incident photon is 0.0245 Angstrom\n", "Energy of incident photon is 8.106e-14 joule\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg23:pg-85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.63*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=90 # scattering angle in degree \n", "d_lamda=h*(1-math.cos(radians(theta)))*1e10/(mo*c)\n", "print \"Percentage change in energy when photon is:\"\n", "#(a) for microwave photon\n", "lamda=3*10**8 #wavelength of microwave photon in Angstrom\n", "energy_change=d_lamda*100/(lamda+d_lamda)\n", "print \"A microwave photon= \",\"{:.1e}\".format(energy_change),\"%\"\n", "\n", "#(b) for visible light photon\n", "lamda=5000 #wavelength of visible light photon in Angstrom\n", "energy_change=d_lamda*100/(lamda+d_lamda)\n", "print \"A visible light photon= \",\"{:.2e}\".format(energy_change),\"%\"\n", "\n", "#(c) for X-ray photon\n", "lamda=1 #wavelength of X-ray photon in Angstrom\n", "energy_change=d_lamda*100/(lamda+d_lamda)\n", "print \"An X-ray photon= \",round(energy_change,1),\"%\"\n", "\n", "#(d) for gamma-ray photon\n", "lamda=0.0124 #wavelength of gamma-ray photon in Angstrom\n", "energy_change=d_lamda*100/(lamda+d_lamda)\n", "print \"A gamma-ray photon= \",int(energy_change),\"%\"\n", "print \"Hence, the compton effect is dominant only in the gamma-ray region and shorter X-ray region.It is not observable in the visible region and microwave region\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage change in energy when photon is:\n", "A microwave photon= 8.1e-09 %\n", "A visible light photon= 4.86e-04 %\n", "An X-ray photon= 2.4 %\n", "A gamma-ray photon= 66 %\n", "Hence, the compton effect is dominant only in the gamma-ray region and shorter X-ray region.It is not observable in the visible region and microwave region\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg24:pg-86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "lamda=2 # wavelength in angstrom\n", "h=6.62*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=45 # scattering angle in degree\n", "d_lamda=h*(1-math.cos(radians(theta)))*1e10/(mo*c) \n", "lamda_n=lamda+d_lamda \n", "f=d_lamda/lamda_n # Calculation of fraction of energy lost by photon \n", "print \"Fraction of energy lost by photon is \",round(f,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fraction of energy lost by photon is 0.0035\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg25:pg-87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "C_W=0.0242 #compton wavelength of electron in Angstrom\n", "theta=45 # scattering angle in degree\n", "d_lamda=C_W*(1-math.cos(radians(theta)))\n", "lamda= d_lamda\n", "print \"Wavelength= \",round(lamda,3),\"Angstrom\"\n", "#answer is incomplete in book as only wavelength is calculated and no region is specified\n", "print \"Hence, such a photon lie in the Gamma-ray region of electromagnetic spectrum.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength= 0.007 Angstrom\n", "Hence, such a photon lie in the Gamma-ray region of electromagnetic spectrum.\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg26:pg-87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.6*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "E=510*10**3 # energy of gamma-rays in eV\n", "theta=90 # scattering angle in degree \n", "lamda=h*c/(E*1.6*10**-19)\n", "d_lamda=h*(1-math.cos(radians(theta)))/(mo*c)\n", "lamda_n=lamda+d_lamda\n", "Er=h*c*d_lamda/(lamda_n*lamda)\n", "phi=math.atan(lamda/lamda_n)\n", "print \"Wavelength of scattered radiation is \",\"{:.3e}\".format(lamda_n),\"meter\"\n", "print \"Energy of recoil electron is \",\"{:.3e}\".format(Er),\"joule\"\n", "print \"Direction of the recoil electron is \",round(degrees(phi),2),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of scattered radiation is 4.844e-12 meter\n", "Energy of recoil electron is 4.073e-14 joule\n", "Direction of the recoil electron is 26.61 degree\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg27:pg-88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.63*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "E=510*10**3 # energy of gamma-rays in eV\n", "theta=90 # scattering angle in degree \n", "lamda=h*c/(E*1.6*10**-19)\n", "d_lamda=h*(1-math.cos(radians(theta)))/(mo*c)\n", "lamda_n=lamda+d_lamda\n", "print \"Wavelength of scattered radiation is \",round(lamda_n*10**10,4),\"Angstrom\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of scattered radiation is 0.0487 Angstrom\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg28:pg-88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=6.62*10**-34 # Planck's constant in joule-sec\n", "mo=9.1*10**-31 # mass of electron in kg\n", "c=3*10**8 # speed of light in m/sec\n", "theta=180 # scattering angle in degree for minimum energy of incident photon\n", "lamda_max=h*(1-math.cos(radians(theta)))/(mo*c)\n", "E_min=h*c/lamda_max\n", "print \"Minimum energy of incident photon is \",int(round(E_min/(1.6*10**-16))),\"KeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum energy of incident photon is 256 KeV\n" ] } ], "prompt_number": 32 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }