{ "metadata": { "name": "", "signature": "sha256:2b8beebd2e19262e31711f6c9b2785f35ddc221da552f5b3fe2ed984a495062e" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter8:X-RAY" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.1:pg-240" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate value of planck's constant\n", "e=1.6*10**-19 #in C\n", "V=100*10**3 #voltage in KV\n", "c=3*10**8 #light speed in m/s\n", "lamdamin=12.35*10**-12 #wavelength in m\n", "h=e*V*lamdamin/c\n", "print \"the value of plancks constant is h=\",\"{:.2e}\".format(h),\"J-s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the value of plancks constant is h= 6.59e-34 J-s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.2:pg-240" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate maximum frequency\n", "h=6.6*10**-34 #planck's constant in J-s\n", "c=3.0*10**8 #light speed in m/s\n", "Ve=50000 #accelerating potential in V\n", "lamdamin=h*c/Ve #wavelength in m\n", "numax=c/lamdamin\n", "print \"maximum frequency present in the radiation from an X-ray tube is numax=\",\"{:.2e}\".format(numax),\"Hz\"\n", "#answer is given in thec book is incorrect =1.2*10**19 Hz\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "maximum frequency present in the radiation from an X-ray tube is numax= 7.58e+37 Hz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.3:pg-240" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate number of electrons \n", "I=2*10**-3 #current in mA\n", "e=1.6*10**-19 \n", "n=I/e\n", "print \"number of electrons striking the target per second is n=\",n,\"unitless\"\n", "#to calculate speed\n", "m=9.1*10**-31 #mass of electron in kg\n", "V=12.4*10**3 #potential difference in V\n", "v=math.sqrt(2*V*e/m)\n", "print \"the speed with which electrons strike the target is v=\",\"{:.1e}\".format(v),\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number of electrons striking the target per second is n= 1.25e+16 unitless\n", "the speed with which electrons strike the target is v= 6.6e+07 m/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.4:pg-240" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength\n", "n=2 #second order for longest wavelength\n", "d=2.82*10**-10 # spacing in angstrom\n", "sintheta=1 \n", "lamdamax=2*d*sintheta/n\n", "print \"the longest wavelength that can be analysed by a rock salt crystal is lamdamax=\",lamdamax,\"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the longest wavelength that can be analysed by a rock salt crystal is lamdamax= 2.82e-10 m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.5:pg-241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate spacing of the crystal\n", "h=6.62*10**-34 #planck's constant in J-s\n", "m=9.1*10**-31 #mass of electron in kg\n", "V=344 #voltage in V\n", "e=1.6*10**-19\n", "lamda=h/math.sqrt(2*m*e*V) #wavelength in m\n", "#according to Bragg's law\n", "n=1\n", "#formula is 2*d*sintheta=n*lamda\n", "d=n*lamda/(2*math.sin(math.pi/6))\n", "print \"the spacing of the crystal is d=\",round(d/1e-10,2),\"angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the spacing of the crystal is d= 0.66 angstrom\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.6:pg-241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength of Kalpha line for an atom\n", "R=1.1*10**5\n", "z=92\n", "#Ka line is emitted when electron jumps from l shell(n2=2) to k shell(n1=1)\n", "#formula is 1/alphaa=R*(z-b)*((1/n1**2)-(1/n2)**2)\n", "alphaa=4/(3*R*(z-1)**2)\n", "print \"wavelength of Kalpha line for an atom is alphaa=\",\"{:.3e}\".format(alphaa),\"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of Kalpha line for an atom is alphaa= 1.464e-09 cm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.7:pg-241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate thickness\n", "#mass absorption coefficient mum of an absorber is related with linear absorption coefficient mu and density of the material rho is given by\n", "#mu=rho*mum=2.7*0.6=1.62 cm**-1\n", "mu=1.62\n", "#if initial intensity Io of the X-ray beam is reduced to I in traversing a distance x in absorber I=Io*e**-mu*x\n", "#where I/Io=20\n", "#put above values in the below equation , we get\n", "x=(2.3026*(math.log(20)/math.log(10)))/1.62\n", "print \"thickness is x=\",round(x,2),\"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "thickness is x= 1.85 cm\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.8:pg-242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate atomic number of the element\n", "#equation for balmer series in hydrogen spectrum is 1/lamda=R*((1/2**2)-(1/n**2))\n", "#for series limit n=infinity ,R=4/lamdainfinity i.e. R=4/364.6nm\n", "#X-ray wavelength of K series is 1/lamda=R*(z-1)**2*((1/1**2)-(1/n**2))\n", "lamda=0.1*10**-9\n", "R=4/(364.6*10**-9)\n", "#for n=infinity ,minimum wavelength of k series is given by\n", "z=math.sqrt(1/(lamda*R))+1\n", "print \"atomic number is z=\",int(z),\"unitless\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "atomic number is z= 31 unitless\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.9:pg-242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength\n", "d=1.87*10**-10 #spacing in angstrom\n", "n=2 \n", "#formula is lamda=2*d*sintheta/n\n", "lamda=2*d*math.sin(math.pi/6)/n\n", "print \"the wavelength of X-rays is lamda=\",round(lamda/1e-10,3),\"angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the wavelength of X-rays is lamda= 0.935 angstrom\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.10:pg-242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength of second X-ray beam\n", "#from bragg's law\n", "#lamda=(d*math.sin(math.pi/3))/n eq(1)\n", "#it is given that,theta=60,n=3,lamda=1.97 angstrom\n", "#from eq(1) we get,2*d*sin60degree=3*0.97 eq(2)\n", "#let lamda' be the second X-ray beam \n", "#we get 2*d'*sin theta'=n'*lamda' eq(3)\n", "#from eq(2) and eq(3),we get\n", "lamda1=math.sin(math.pi/6)*3*0.97/math.sin(math.pi/3) #where lamda1=lamda'\n", "print \"wavelength of X-ray is lamda1=\",round(lamda1,2),\"angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of X-ray is lamda1= 1.68 angstrom\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.11:pg-243" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength\n", "d=2.82*10**-10 #spacing in m\n", "n=1 \n", "lamda=2*d*math.sin(10*math.pi/180)/n\n", "print \"wavelength of X-ray is lamda=\",round(lamda/1e-10,3),\"angstrom\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of X-ray is lamda= 0.979 angstrom\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.12:pg-243" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#deduce possible spacing of the set of planes\n", "#for first order , 2*d*sintheta1=1*lamda...eq(1)\n", "#for second order ,2*d*sintheta2=2*lamda..eq(2)\n", "#for third order, 2*d*sintheta3=3*lamda......eq(3)\n", "#for fourth order, 2*d*sintheta4=4*lamda..............eq(4)\n", "#divide eq(2) by eq(1),we get sintheta2=2*sintheta1\n", "#similarly,sintheta3=3*sintheta1,sintheta4=4*sintheta1\n", "lamda=1.32*10**-10\n", "sintheta1=0.1650\n", "d1=lamda/(2*sintheta1)#for first order n=1,d1=d/n\n", "d2=lamda/(2*2*sintheta1) #for second order n=2,d2=d/n\n", "d3=lamda/(2*3*sintheta1) #for third order n=3,d3=d/n\n", "d4=lamda/(2*4*sintheta1) #for fourth order n=4,d4=d/n\n", "print \"d1=\",d1,\"m\"\n", "print \"d2=\",d2,\"m\"\n", "print \"d3=\",round(d3,2),\"m\"\n", "print \"d4=\",d4,\"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "d1= 4e-10 m\n", "d2= 2e-10 m\n", "d3= 0.0 m\n", "d4= 1e-10 m\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.13:pg-248" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate compton shift and wavelength\n", "h=6.63*10**-34 #planck's constant in J-s\n", "m0=9.11*10**-31 #mass of electron\n", "c=3*10**8 #light speed in m/s\n", "dellamda=h*(1-(1/math.sqrt(2)))/(m0*c)\n", "lamda0=2*10**-10\n", "lamda=dellamda+lamda0\n", "print \"compton shift is dellamda=\",round(dellamda/1e-10,4),\"angstrom\"\n", "print \"wavelength of the scattered X-rays is lamda=\",round(lamda/1e-10,4),\"angstrom\"\n", "#to calculate fraction of energy lost by the photon in the collision\n", "#energy lost =E0-E/E0=(hc/lamda0)-(hc/lamda)/(ha/lamda0)\n", "#we get,\n", "energylost=dellamda/lamda\n", "print \"energylost =\",round(energylost,5),\"unitless\" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "compton shift is dellamda= 0.0071 angstrom\n", "wavelength of the scattered X-rays is lamda= 2.0071 angstrom\n", "energylost = 0.00354 unitless\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.14:pg-249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength and energy\n", "#formula is lamda'-lamda=h*(1-cos phi)/(m0*c),where phi=90 degree, lamda'=2lamda ---------------eq(1)\n", "#dellamda=2lamda-lamda=lamda ----------------------------eq(2)\n", "h=6.62*10**-34 #planck's constant\n", "c=3*10**8 #light speed in m.s\n", "m0=9*10**-31 #mass of electron in kg\n", "#from eq(1) and eq(2) ,we get\n", "lamda=h/(m0*c)\n", "print \"wavelength is lamda=\",round(lamda/1e-10,4),\"angstrom\"\n", "E=h*c/lamda\n", "print \"energy of the incident photon is E=\",E,\"J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength is lamda= 0.0245 angstrom\n", "energy of the incident photon is E= 8.1e-14 J\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.15:pg-249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength of radiation and direction of emission\n", "h=6.6*10**-34 #planck's constant in J-s\n", "c=3*10**8 #speed of light in m/s\n", "energy=510*10**3 #energy of photon in eV\n", "lamda=h*c/(energy*1.6*10**-19)\n", "mo=9.1*10**-31 #mass of electron in Kg\n", "lamda1=lamda+h*(1-math.cos(math.pi/2))/(mo*c)\n", "print \"wavelength of radiation is lamda1=\",\"{:.2e}\".format(lamda1),\"m\"\n", "theta=math.degrees(math.atan(lamda*math.sin(math.pi/2)/(lamda1-lamda*math.cos(math.pi/2))))\n", "print\"direction of emission of electron is theta=\",round(theta,2),\"degree\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of radiation is lamda1= 4.84e-12 m\n", "direction of emission of electron is theta= 26.61 degree\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8.16:pg-249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate wavelength of two X-rays\n", "h=6.6*10**-34 #planck's constant in J-s\n", "c=3.0*10.0**8 #light speed in m/s\n", "mo=9.1*10**-31 #mass of electron in kg\n", "lamda=10.0*10**-12 #wavelength in pm\n", "lamda1=lamda+((h/(mo*c))*(1-(1/math.sqrt(2))))\n", "print \"wavelength of two X-rays is lamda1=\",round(lamda1*(1e12),1),\"picometer\"\n", "#to calculate maximum wavelength\n", "lamda2=lamda+((2*h)/(mo*c))\n", "print \"maximum wavelength present in the scattered X-rays is lamda2=\",round(lamda2*(1e12),2),\"picometer\"\n", "#to calculate maximum kinetic energy \n", "Kmax=(h*c)*((1/lamda)-(1/lamda2))/(1.6*10**-19)\n", "print \"maximum kinetic energy of the recoil electrons is Kmax=\",round(Kmax/1000.0,1),\"KeV\"\n", "\n", "# the answer is slightly different due to approximation\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "wavelength of two X-rays is lamda1= 10.7 picometer\n", "maximum wavelength present in the scattered X-rays is lamda2= 14.84 picometer\n", "maximum kinetic energy of the recoil electrons is Kmax= 40.3 KeV\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }