{ "metadata": { "name": "", "signature": "sha256:141e2987b2be679ae1fc9e807cf81c12805438f836d3be09701fc88866bf9bb5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter5:LASERS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5.1:pg-164" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate area of the spot on the moon\n", "lamda=6*10**-7 #wavelength in m\n", "d=2 #diameter in m\n", "dtheta=lamda/d #angular spread in radian\n", "D=4*10**8 #distance of the moon\n", "A=(D*dtheta)**2\n", "print \"the areal spread is A=\",\"{:.2e}\".format(A),\"m**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the areal spread is A= 1.44e+04 m**2\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5.2:pg-164" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate angular spread of the beam\n", "lamda=8*10**-7 #wavelength in m\n", "d=5*10**-3 #aperture in m\n", "dtheta=lamda/d \n", "print \"the angular spread of the beam is dtheta=\",\"{:.1e}\".format(dtheta),\"radian\"\n", "#to calculate the areal spread when it reaches the moon\n", "D=4*10**8 #distance of the moon in m\n", "A=(D*dtheta)**2\n", "print \"the areal spread is A=\",\"{:.3e}\".format(A),\"m**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the angular spread of the beam is dtheta= 1.6e-04 radian\n", "the areal spread is A= 4.096e+09 m**2\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5.3:pg-165" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate number of oscillations corresponding to the coherence length\n", "L=2.945*10**-2 #coherence length in m\n", "lamda=5890*10**-10 #wavelength of sodium light in m\n", "n=L/lamda\n", "print \"the number of oscillations is n=\",\"{:.1e}\".format(n),\"unitless\"\n", "#to calculate coherence time\n", "c=3*10**8 #light speed in m\n", "Time=L/c #coherence time\n", "print \"the coherence Time=\",\"{:.2e}\".format(Time),\"s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the number of oscillations is n= 5.0e+04 unitless\n", "the coherence Time= 9.82e-11 s\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5.4:pg-165" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#to calculate area and intensity of the image\n", "lamda=7200*10**-10 #wavelength in m\n", "d=5*10**-3 #aperture in m\n", "dtheta=lamda/d #angular spread in radian \n", "f=0.1 #focal length in m\n", "arealspread=(dtheta*f)**2\n", "print \"areal spread =\",\"{:.3e}\".format(arealspread),\"m**2\"\n", "power=50*10**-3\n", "I=power/arealspread\n", "print \"intensity of the image is I=\",\"{:.3e}\".format(I),\"watts/m**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "areal spread = 2.074e-10 m**2\n", "intensity of the image is I= 2.411e+08 watts/m**2\n" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }