{ "metadata": { "name": "", "signature": "sha256:a97623c1294ef4fbd99f1423addadcfc2341e13ca402c26d0b2a69dd71e1782a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Conducting materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.1, Page number 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#Variable declaration\n", "m=9.1*10**-31; #mass of the electron in kg\n", "n=2.533*10**28; #concentration of electrons per m^3\n", "e=1.6*10**-19;\n", "tow_r=3.1*10**-14; #relaxation time in sec\n", "\n", "#Calculation\n", "rho=m/(n*(e**2*tow_r));\n", "\n", "#Result\n", "print(\"electrical resistivity in ohm metre is\",rho);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('electrical resistivity in ohm metre is', 4.526937967219795e-08)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.2, Page number 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "s=3.75*10**3; #slope\n", "k=1.38*10**-23;\n", "\n", "#Calculation\n", "Eg=2*k*s;\n", "Eg=Eg/(1.6*10**-19); #converting J to eV\n", "Eg=math.ceil(Eg*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"band gap of semiconductor in eV is\",Eg);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('band gap of semiconductor in eV is', 0.647)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.3, Page number 231" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "T=989; #temperature in C\n", "k=1.38*10**-23;\n", "#let E-EF be E\n", "E=0.5; #occupied level of electron in eV\n", "\n", "#Calculation\n", "T=T+273; #temperature in K\n", "E=E*1.6*10**-19; #converting eV to J\n", "#let fermi=dirac distribution function f(E) be f\n", "f=1/(1+math.exp(E/(k*T)));\n", "f=math.ceil(f*10**3)/10**3; #rounding off to 3 decimals\n", "\n", "#Result\n", "print(\"probability of occupation of electrons is\",f);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('probability of occupation of electrons is', 0.011)\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.4, Page number 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "mew_e=0.0035; #mobility of electrons in m^2/Vs\n", "E=0.5; #electric field strength in V/m\n", "\n", "#Calculation\n", "vd=mew_e*E;\n", "vd=vd*10**3;\n", "\n", "#Result\n", "print(\"drift velocity of free electrons in m/sec is\",vd,\"*10**-3\");\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('drift velocity of free electrons in m/sec is', 1.75, '*10**-3')\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.5, Page number 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "A=6.022*10**23; #avagadro number\n", "e=1.6*10**-19;\n", "rho=1.73*10**-8; #resistivity of Cu in ohm metre\n", "w=63.5; #atomic weight \n", "d=8.92*10**3; #density in kg/m^3\n", "\n", "#Calculation\n", "d=d*10**3;\n", "sigma=1/rho;\n", "sigmaa=sigma/10**7;\n", "sigmaa=math.ceil(sigmaa*10**3)/10**3; #rounding off to 3 decimals\n", "n=(d*A)/w;\n", "mew=sigma/(n*e); #mobility of electrons\n", "mew=mew*10**3;\n", "mew=math.ceil(mew*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"electrical conductivity in ohm-1 m-1\",sigmaa,\"*10**7\");\n", "print(\"concentration of carriers per m^3\",n);\n", "print(\"mobility of electrons in m^2/Vsec is\",mew,\"*10**-3\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('electrical conductivity in ohm-1 m-1', 5.781, '*10**7')\n", "('concentration of carriers per m^3', 8.459250393700786e+28)\n", "('mobility of electrons in m^2/Vsec is', 4.2708, '*10**-3')\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.6, Page number 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "n=18.1*10**28; #concentration of electrons per m^3\n", "h=6.62*10**-34; #planck constant in Js\n", "me=9.1*10**-31; #mass of electron in kg\n", "\n", "#Calculation\n", "X=h**2/(8*me);\n", "E_F0=X*(((3*n)/math.pi)**(2/3));\n", "E_F0=E_F0/(1.6*10**-19); #converting J to eV\n", "\n", "#Result\n", "print(\"Fermi energy in eV is\",E_F0);\n", "\n", "#answer given in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('Fermi energy in eV is', 3.762396978021977e-19)\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.7, Page number 233" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "E_F0=5.5; #fermi energy in eV\n", "h=6.63*10**-34; #planck constant in Js\n", "me=9.1*10**-31; #mass of electron in kg\n", "\n", "#Calculation\n", "E_F0=E_F0*1.6*10**-19; #converting eV to J\n", "n=((2*me*E_F0)**(3/2))*((8*math.pi)/(3*h**3));\n", "\n", "#Result\n", "print(\"concentration of free electrons per unit volume of silver per m^3 is\",n);\n", "\n", "#answer given in the book is wrong\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('concentration of free electrons per unit volume of silver per m^3 is', 4.603965704817037e+52)\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.8, Page number 233" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "Eg=1.07; #energy gap of silicon in eV\n", "k=1.38*10**-23;\n", "T=298; #temperature in K\n", "\n", "#Calculation\n", "Eg=Eg*1.6*10**-19; #converting eV to J\n", "#let the probability of electron f(E) be X\n", "#X=1/(1+exp((E-Ef)/(k*T)))\n", "#but E=Ec and Ec-Ef=Eg/2\n", "X=1/(1+math.exp(Eg/(2*k*T)))\n", "\n", "#Result\n", "print(\"probability of an electron thermally excited is\",X);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('probability of an electron thermally excited is', 9.122602463573379e-10)\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.9, Page number 234" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "k=1.38*10**-23;\n", "m=9.1*10**-31; #mass of the electron in kg\n", "vf=0.86*10**6; #fermi velocity in m/sec\n", "\n", "#Calculation\n", "Efj=(m*vf**2)/2;\n", "Ef=Efj/(1.6*10**-19); #converting J to eV\n", "Ef=math.ceil(Ef*10**3)/10**3; #rounding off to 3 decimals\n", "Tf=Efj/k;\n", "Tf=Tf/10**4;\n", "Tf=math.ceil(Tf*10**4)/10**4; #rounding off to 4 decimals\n", "\n", "#Result\n", "print(\"fermi energy of metal in J is\",Efj);\n", "print(\"fermi energy of metal in eV is\",Ef);\n", "print(\"fermi temperature in K is\",Tf,\"*10**4\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('fermi energy of metal in J is', 3.3651800000000002e-19)\n", "('fermi energy of metal in eV is', 2.104)\n", "('fermi temperature in K is', 2.4386, '*10**4')\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.10, Page number 234" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#Variable declaration\n", "sigma=5.82*10**7; #electrical conductivity in ohm^-1m^-1\n", "K=387; #thermal conductivity of Cu in W/mK\n", "T=27; #temperature in C\n", "\n", "#Calculation\n", "T=T+273; #temperature in K\n", "L=K/(sigma*T);\n", "\n", "#Result\n", "print(\"lorentz number in W ohm/K^2 is\",L);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('lorentz number in W ohm/K^2 is', 2.2164948453608246e-08)\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 8.11, Page number 235" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "#importing modules\n", "import math\n", "\n", "#Variable declaration\n", "m=9.1*10**-31; #mass of the electron in kg\n", "e=1.6*10**-19;\n", "k=1.38*10**-23;\n", "n=8.49*10**28; #concentration of electrons in Cu per m^3\n", "tow_r=2.44*10**-14; #relaxation time in sec\n", "T=20; #temperature in C\n", "\n", "#Calculation\n", "T=T+273; #temperature in K\n", "sigma=(n*(e**2)*tow_r)/m;\n", "sigmaa=sigma/10**7;\n", "sigmaa=math.ceil(sigmaa*10**4)/10**4; #rounding off to 4 decimals\n", "K=(n*(math.pi**2)*(k**2)*T*tow_r)/(3*m);\n", "K=math.ceil(K*100)/100; #rounding off to 2 decimals\n", "L=K/(sigma*T);\n", "\n", "#Result\n", "print(\"electrical conductivity in ohm^-1 m^-1 is\",sigmaa,\"*10**7\");\n", "print(\"thermal conductivity in W/mK is\",K);\n", "print(\"Lorentz number in W ohm/K^2 is\",L);\n", "\n", "#answer for lorentz number given in the book is wrong\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('electrical conductivity in ohm^-1 m^-1 is', 5.8277, '*10**7')\n", "('thermal conductivity in W/mK is', 417.89)\n", "('Lorentz number in W ohm/K^2 is', 2.4473623172034308e-08)\n" ] } ], "prompt_number": 29 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }